Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Circ Genom Precis Med ; : e004448, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847081

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is defined clinically by pathological left ventricular hypertrophy. We have previously developed a plasma proteomics biomarker panel that correlates with clinical markers of disease severity and sudden cardiac death risk in adult patients with HCM. The aim of this study was to investigate the utility of adult biomarkers and perform new discoveries in proteomics in childhood-onset HCM. METHODS: Fifty-nine protein biomarkers were identified from an exploratory plasma proteomics screen in children with HCM and augmented into our existing multiplexed targeted liquid chromatography-tandem/mass spectrometry-based assay. The association of these biomarkers with clinical phenotypes and outcomes was prospectively tested in plasma collected from 148 children with HCM and 50 healthy controls. Machine learning techniques were used to develop novel pediatric plasma proteomic biomarker panels. RESULTS: Four previously identified adult HCM markers (aldolase fructose-bisphosphate A, complement C3a, talin-1, and thrombospondin 1) and 3 new markers (glycogen phosphorylase B, lipoprotein a, and profilin 1) were elevated in pediatric HCM. Using supervised machine learning applied to training (n=137) and validation cohorts (n=61), this 7-biomarker panel differentiated HCM from healthy controls with an area under the curve of 1.0 in the training data set (sensitivity 100% [95% CI, 95-100]; specificity 100% [95% CI, 96-100]) and 0.82 in the validation data set (sensitivity 75% [95% CI, 59-86]; specificity 88% [95% CI, 75-94]). Reduced circulating levels of 4 other peptides (apolipoprotein L1, complement 5b, immunoglobulin heavy constant epsilon, and serum amyloid A4 peptides) found in children with high sudden cardiac death risk provided complete separation from the low and intermediate risk groups and predicted mortality and adverse arrhythmic outcomes (hazard ratio, 2.04 [95% CI, 1.0-4.2]; P=0.044). CONCLUSIONS: In children, a 7-biomarker proteomics panel can distinguish HCM from controls with high sensitivity and specificity, and a second 4-biomarker panel identifies those at high risk of adverse arrhythmic outcomes, including sudden cardiac death.

2.
Nat Microbiol ; 9(5): 1293-1311, 2024 May.
Article En | MEDLINE | ID: mdl-38622380

Children infected with SARS-CoV-2 rarely progress to respiratory failure. However, the risk of mortality in infected people over 85 years of age remains high. Here we investigate differences in the cellular landscape and function of paediatric (<12 years), adult (30-50 years) and older adult (>70 years) ex vivo cultured nasal epithelial cells in response to infection with SARS-CoV-2. We show that cell tropism of SARS-CoV-2, and expression of ACE2 and TMPRSS2 in nasal epithelial cell subtypes, differ between age groups. While ciliated cells are viral replication centres across all age groups, a distinct goblet inflammatory subtype emerges in infected paediatric cultures and shows high expression of interferon-stimulated genes and incomplete viral replication. In contrast, older adult cultures infected with SARS-CoV-2 show a proportional increase in basaloid-like cells, which facilitate viral spread and are associated with altered epithelial repair pathways. We confirm age-specific induction of these cell types by integrating data from in vivo COVID-19 studies and validate that our in vitro model recapitulates early epithelial responses to SARS-CoV-2 infection.


Angiotensin-Converting Enzyme 2 , COVID-19 , Epithelial Cells , Nasal Mucosa , SARS-CoV-2 , Serine Endopeptidases , Humans , COVID-19/virology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Adult , Middle Aged , Aged , Epithelial Cells/virology , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Nasal Mucosa/virology , Child , Age Factors , Virus Replication , Child, Preschool , Viral Tropism , Male , Female , Aged, 80 and over , Cells, Cultured , Adolescent , Infant
3.
Mol Cell Proteomics ; 23(3): 100718, 2024 Mar.
Article En | MEDLINE | ID: mdl-38224738

A functional role has been ascribed to the human dihydrofolate reductase 2 (DHFR2) gene based on the enzymatic activity of recombinant versions of the predicted translated protein. However, the in vivo function is still unclear. The high amino acid sequence identity (92%) between DHFR2 and its parental homolog, DHFR, makes analysis of the endogenous protein challenging. This paper describes a targeted mass spectrometry proteomics approach in several human cell lines and tissue types to identify DHFR2-specific peptides as evidence of its translation. We show definitive evidence that the DHFR2 activity in the mitochondria is in fact mediated by DHFR, and not DHFR2. Analysis of Ribo-seq data and an experimental assessment of ribosome association using a sucrose cushion showed that the two main Ensembl annotated mRNA isoforms of DHFR2, 201 and 202, are differentially associated with the ribosome. This indicates a functional role at both the RNA and protein level. However, we were unable to detect DHFR2 protein at a detectable level in most cell types examined despite various RNA isoforms of DHFR2 being relatively abundant. We did detect a DHFR2-specific peptide in embryonic heart, indicating that the protein may have a specific role during embryogenesis. We propose that the main functionality of the DHFR2 gene in adult cells is likely to arise at the RNA level.


RNA , Tetrahydrofolate Dehydrogenase , Humans , Cell Line , Peptides/metabolism , Protein Biosynthesis , Ribosomes/metabolism , RNA/metabolism , RNA, Messenger/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism
4.
Mucosal Immunol ; 17(1): 124-136, 2024 Feb.
Article En | MEDLINE | ID: mdl-38007005

SARS-CoV-2 initially infects cells in the nasopharynx and oral cavity. The immune system at these mucosal sites plays a crucial role in minimizing viral transmission and infection. To develop new strategies for preventing SARS-CoV-2 infection, this study aimed to identify proteins that protect against viral infection in saliva. We collected 551 saliva samples from 290 healthcare workers who had tested positive for COVID-19, before vaccination, between June and December 2020. The samples were categorized based on their ability to block or enhance infection using in vitro assays. Mass spectrometry and enzyme-linked immunosorbent assay experiments were used to identify and measure the abundance of proteins that specifically bind to SARS-CoV-2 antigens. Immunoglobulin (Ig)A specific to SARS-CoV-2 antigens was detectable in over 83% of the convalescent saliva samples. We found that concentrations of anti-receptor-binding domain IgA >500 pg/µg total protein in saliva correlate with reduced viral infectivity in vitro. However, there is a dissociation between the salivary IgA response to SARS-CoV-2, and systemic IgG titers in convalescent COVID-19 patients. Then, using an innovative technique known as spike-baited mass spectrometry, we identified novel spike-binding proteins in saliva, most notably vimentin, which correlated with increased viral infectivity in vitro and could serve as a therapeutic target against COVID-19.


COVID-19 , Humans , Antibodies, Viral , Antigens, Viral , Immunoglobulin A , SARS-CoV-2 , Vimentin
5.
Int J Mol Sci ; 24(18)2023 Sep 06.
Article En | MEDLINE | ID: mdl-37762058

As disease-modifying therapies are now available for Alzheimer's disease (AD), accessible, accurate and affordable biomarkers to support diagnosis are urgently needed. We sought to develop a mass spectrometry-based urine test as a high-throughput screening tool for diagnosing AD. We collected urine from a discovery cohort (n = 11) of well-characterised individuals with AD (n = 6) and their asymptomatic, CSF biomarker-negative study partners (n = 5) and used untargeted proteomics for biomarker discovery. Protein biomarkers identified were taken forward to develop a high-throughput, multiplexed and targeted proteomic assay which was tested on an independent cohort (n = 21). The panel of proteins identified are known to be involved in AD pathogenesis. In comparing AD and controls, a panel of proteins including MIEN1, TNFB, VCAM1, REG1B and ABCA7 had a classification accuracy of 86%. These proteins have been previously implicated in AD pathogenesis. This suggests that urine-targeted mass spectrometry has potential utility as a diagnostic screening tool in AD.


Alzheimer Disease , Urinary Tract , Humans , Alzheimer Disease/diagnosis , Proteomics , Machine Learning , Biomarkers , Neoplasm Proteins , Intracellular Signaling Peptides and Proteins
6.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article En | MEDLINE | ID: mdl-37373322

Dried blood spots (DBSs) biomarkers are convenient for monitoring for specific lysosomal storage diseases (LSDs), but they could have relevance for other LSDs. To determine the specificity and utility of glycosphingolipidoses biomarkers against other LSDs, we applied a multiplexed lipid liquid chromatography tandem mass spectrometry assay to a DBS cohort of healthy controls (n = 10) and Gaucher (n = 4), Fabry (n = 10), Pompe (n = 2), mucopolysaccharidosis types I-VI (n = 52), and Niemann-Pick disease type C (NPC) (n = 5) patients. We observed no complete disease specificity for any of the markers tested. However, comparison among the different LSDs highlighted new applications and perspectives of the existing biomarkers. We observed elevations in glucosylceramide isoforms in the NPC and Gaucher patients relative to the controls. In NPC, there was a greater proportion of C24 isoforms, giving a specificity of 96-97% for NPC, higher than 92% for the NPC biomarker N-palmitoyl-O-phosphocholineserine ratio to lyso-sphingomyelin. We also observed significantly elevated levels of lyso-dihexosylceramide in Gaucher and Fabry disease as well as elevated lyso-globotriaosylceramide (Lyso-Gb3) in Gaucher disease and the neuronopathic forms of Mucopolysaccharidoses. In conclusion, DBS glucosylceramide isoform profiling has increased the specificity for the detection of NPC, thereby improving diagnostic accuracy. Low levels of lyso-lipids can be observed in other LSDs, which may have implications in their disease pathogenesis.


Fabry Disease , Lysosomal Storage Diseases , Humans , Glucosylceramides , Lysosomal Storage Diseases/diagnosis , Fabry Disease/diagnosis , Biomarkers , Protein Isoforms
7.
Hum Mol Genet ; 32(15): 2464-2472, 2023 07 20.
Article En | MEDLINE | ID: mdl-37145097

Fabry disease stems from a deficiency of alpha-galactosidase and results in the accumulation of globotriaosylceramide (Gb3). However, the production of its deacylated form globotriaosylsphingosine (lyso-Gb3) is also observed and its plasma levels have closer association with disease severity. Studies have shown that lyso-Gb3 directly affects podocytes and causes sensitisation of peripheral nociceptive neurons. However, little is understood of the mechanisms of this cytotoxicity. To study the effect on neuronal cells, we incubated SH-Sy5y cells with lyso-Gb3 at low (20 ng/mL) and high (200 ng/mL) levels, to mimic mild and classical FD serum levels. We used glucosylsphingosine as a positive control to determine specific effects of lyso-Gb3. Proteomic analyses revealed that cellular systems affected by lyso-Gb3 included cell signalling particularly protein ubiquitination and protein translation. To confirm ER/proteasome perturbations, we performed an immune enrichment of ubiquitinated proteins and demonstrated specific increased protein ubiquitination at both doses. The most ubiquitinated proteins observed included the chaperone/heat shock proteins, cytoskeletal proteins and synthesis/translation proteins. To detect proteins that interact directly with lyso-Gb3, we immobilised lyso-lipids, then incubated them with neuronal cellular extracts and identified bound proteins using mass spectrometry. Proteins that specifically bound were chaperones and included HSP90, HSP60 and the TRiC complex. In conclusion, lyso-Gb3 exposure affects pathways involved in protein translation and folding. This response is observed as increased ubiquitination and changes in signalling proteins which may explain the multiple biological processes, particularly cellular remodelling, often associated with FD.


Fabry Disease , Neuroblastoma , Humans , Fabry Disease/genetics , Ubiquitinated Proteins , Proteomics , alpha-Galactosidase/genetics , Sphingolipids/metabolism , Glycolipids/metabolism , Glycolipids/pharmacology
8.
Clin Chem Lab Med ; 61(2): 302-310, 2023 01 27.
Article En | MEDLINE | ID: mdl-36395058

OBJECTIVES: During 2020, the UK's Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity. METHODS: Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study. RESULTS: Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7-39.1) demonstrated diagnostic sensitivity of 92.4% (87.4-95.5), specificity of 97.4% (94.0-98.9) and near total concordance with RT-qPCR (Cohen's Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1-99.3), specificity 97.4% (94.0-98.9) and Cohen's Kappa 0.95. CONCLUSIONS: This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory.


COVID-19 , SARS-CoV-2 , Humans , Pandemics , COVID-19/diagnosis , COVID-19 Testing , Tandem Mass Spectrometry/methods , Chromatography, Liquid , Prospective Studies , Clinical Laboratory Techniques/methods , Sensitivity and Specificity , Peptides
9.
EBioMedicine ; 85: 104293, 2022 Nov.
Article En | MEDLINE | ID: mdl-36182629

BACKGROUND: The majority of those infected by ancestral Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) during the UK first wave (starting March 2020) did not require hospitalisation. Most had a short-lived mild or asymptomatic infection, while others had symptoms that persisted for weeks or months. We hypothesized that the plasma proteome at the time of first infection would reflect differences in the inflammatory response that linked to symptom severity and duration. METHODS: We performed a nested longitudinal case-control study and targeted analysis of the plasma proteome of 156 healthcare workers (HCW) with and without lab confirmed SARS-CoV-2 infection. Targeted proteomic multiple-reaction monitoring analysis of 91 pre-selected proteins was undertaken in uninfected healthcare workers at baseline, and in infected healthcare workers serially, from 1 week prior to 6 weeks after their first confirmed SARS-CoV-2 infection. Symptom severity and antibody responses were also tracked. Questionnaires at 6 and 12 months collected data on persistent symptoms. FINDINGS: Within this cohort (median age 39 years, interquartile range 30-47 years), 54 healthcare workers (44% male) had PCR or antibody confirmed infection, with the remaining 102 (38% male) serving as uninfected controls. Following the first confirmed SARS-CoV-2 infection, perturbation of the plasma proteome persisted for up to 6 weeks, tracking symptom severity and antibody responses. Differentially abundant proteins were mostly coordinated around lipid, atherosclerosis and cholesterol metabolism pathways, complement and coagulation cascades, autophagy, and lysosomal function. The proteomic profile at the time of seroconversion associated with persistent symptoms out to 12 months. Data are available via ProteomeXchange with identifier PXD036590. INTERPRETATION: Our findings show that non-severe SARS-CoV-2 infection perturbs the plasma proteome for at least 6 weeks. The plasma proteomic signature at the time of seroconversion has the potential to identify which individuals are more likely to suffer from persistent symptoms related to SARS-CoV-2 infection. FUNDING INFORMATION: The COVIDsortium is supported by funding donated by individuals, charitable Trusts, and corporations including Goldman Sachs, Citadel and Citadel Securities, The Guy Foundation, GW Pharmaceuticals, Kusuma Trust, and Jagclif Charitable Trust, and enabled by Barts Charity with support from University College London Hospitals (UCLH) Charity. This work was additionally supported by the Translational Mass Spectrometry Research Group and the Biomedical Research Center (BRC) at Great Ormond Street Hospital.


COVID-19 , SARS-CoV-2 , Adult , Female , Humans , Male , Middle Aged , Case-Control Studies , Proteome , Proteomics
10.
Acta Neuropathol Commun ; 10(1): 134, 2022 09 08.
Article En | MEDLINE | ID: mdl-36076304

BACKGROUND: The molecular drivers of early sporadic Parkinson's disease (PD) remain unclear, and the presence of widespread end stage pathology in late disease masks the distinction between primary or causal disease-specific events and late secondary consequences in stressed or dying cells. However, early and mid-stage Parkinson's brains (Braak stages 3 and 4) exhibit alpha-synuclein inclusions and neuronal loss along a regional gradient of severity, from unaffected-mild-moderate-severe. Here, we exploited this spatial pathological gradient to investigate the molecular drivers of sporadic PD. METHODS: We combined high precision tissue sampling with unbiased large-scale profiling of protein expression across 9 brain regions in Braak stage 3 and 4 PD brains, and controls, and verified these results using targeted proteomic and functional analyses. RESULTS: We demonstrate that the spatio-temporal pathology gradient in early-mid PD brains is mirrored by a biochemical gradient of a changing proteome. Importantly, we identify two key events that occur early in the disease, prior to the occurrence of alpha-synuclein inclusions and neuronal loss: (i) a metabolic switch in the utilisation of energy substrates and energy production in the brain, and (ii) perturbation of the mitochondrial redox state. These changes may contribute to the regional vulnerability of developing alpha-synuclein pathology. Later in the disease, mitochondrial function is affected more severely, whilst mitochondrial metabolism, fatty acid oxidation, and mitochondrial respiration are affected across all brain regions. CONCLUSIONS: Our study provides an in-depth regional profile of the proteome at different stages of PD, and highlights that mitochondrial dysfunction is detectable prior to neuronal loss, and alpha-synuclein fibril deposition, suggesting that mitochondrial dysfunction is one of the key drivers of early disease.


Parkinson Disease , alpha-Synuclein , Humans , Mitochondria/metabolism , Parkinson Disease/pathology , Proteome/metabolism , Proteomics , alpha-Synuclein/metabolism
11.
Cell Rep Methods ; 2(9): 100279, 2022 09 19.
Article En | MEDLINE | ID: mdl-35975199

Determining the protection an individual has to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VoCs) is crucial for future immune surveillance, vaccine development, and understanding of the changing immune response. We devised an informative assay to current ELISA-based serology using multiplexed, baited, targeted proteomics for direct detection of multiple proteins in the SARS-CoV-2 anti-spike antibody immunocomplex. Serum from individuals collected after infection or first- and second-dose vaccination demonstrates this approach and shows concordance with existing serology and neutralization. Our assays show altered responses of both immunoglobulins and complement to the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.1) VoCs and a reduced response to Omicron (B1.1.1529). We were able to identify individuals who had prior infection, and observed that C1q is closely associated with IgG1 (r > 0.82) and may better reflect neutralization to VoCs. Analyzing additional immunoproteins beyond immunoglobulin (Ig) G, provides important information about our understanding of the response to infection and vaccination.


Antibody Formation , COVID-19 , Humans , Proteomics , SARS-CoV-2/genetics , Immunoglobulin G , Antibodies, Viral
12.
Dev Med Child Neurol ; 64(12): 1539-1546, 2022 12.
Article En | MEDLINE | ID: mdl-35833379

AIM: Using Niemann-Pick type C disease (NPC) as a paradigm, we aimed to improve biomarker discovery in patients with neurometabolic disorders. METHOD: Using a multiplexed liquid chromatography tandem mass spectrometry dried bloodspot assay, we developed a selective intelligent biomarker panel to monitor known biomarkers N-palmitoyl-O-phosphocholineserine and 3ß,5α,6ß-trihydroxy-cholanoyl-glycine as well as compounds predicted to be affected in NPC pathology. We applied this panel to a clinically relevant paediatric patient cohort (n = 75; 35 males, 40 females; mean age 7 years 6 months, range 4 days-19 years 8 months) presenting with neurodevelopmental and/or neurodegenerative pathology, similar to that observed in NPC. RESULTS: The panel had a far superior performance compared with individual biomarkers. Namely, NPC-related established biomarkers used individually had 91% to 97% specificity but the combined panel had 100% specificity. Moreover, multivariate analysis revealed long-chain isoforms of glucosylceramide were elevated and very specific for patients with NPC. INTERPRETATION: Despite advancements in next-generation sequencing and precision medicine, neurological non-enzymatic disorders remain difficult to diagnose and lack robust biomarkers or routine functional testing for genetic variants of unknown significance. Biomarker panels may have better diagnostic accuracy than individual biomarkers in neurometabolic disorders, hence they can facilitate more prompt disease identification and implementation of emerging targeted, disease-specific therapies. WHAT THIS PAPER ADDS: Intelligent biomarker panel design can help expedite diagnosis in neurometabolic disorders. In Niemann-Pick type C disease, such a panel performed better than individual biomarkers. Biomarker panels are easy to implement and widely applicable to neurometabolic conditions.


Niemann-Pick Disease, Type C , Male , Female , Child , Humans , Infant, Newborn , Niemann-Pick Disease, Type C/diagnosis , Biomarkers
13.
Br J Anaesth ; 127(4): 511-520, 2021 10.
Article En | MEDLINE | ID: mdl-34238546

BACKGROUND: Maintaining adequate oxygen delivery (DO2) after major surgery is associated with minimising organ dysfunction. Skin is particularly vulnerable to reduced DO2. We tested the hypothesis that reduced perioperative DO2 fuels inflammation in metabolically compromised skin after major surgery. METHODS: Participants undergoing elective oesophagectomy were randomised immediately after surgery to standard of care or haemodynamic therapy to achieve their individualised preoperative DO2. Abdominal punch skin biopsies were snap-frozen before and 48 h after surgery. On-line two-dimensional liquid chromatography and ultra-high-definition label-free mass spectrometry was used to characterise the skin proteome. The primary outcome was proteomic changes compared between normal (≥preoperative value before induction of anaesthesia) and low DO2 (

Esophagectomy/methods , Oxygen/administration & dosage , Proteomics , Skin/metabolism , Aged , Aged, 80 and over , Biopsy , Double-Blind Method , Elective Surgical Procedures , Female , Humans , Male , Middle Aged , Perioperative Care/methods , Proteins/metabolism
14.
iScience ; 24(2): 102020, 2021 Feb 19.
Article En | MEDLINE | ID: mdl-33532713

The neuronal ceroid lipofuscinoses (NCL) are a group of 13 rare neurodegenerative disorders characterized by accumulation of cellular storage bodies. There are few therapeutic options, and existing tests do not monitor disease progression and treatment response. However, urine biomarkers could address this need. Proteomic analysis of CLN2 patient urine revealed activation of immune response pathways and pathways associated with the unfolded protein response. Analysis of CLN5 and CLN6 sheep model urine showed subtle changes. To confirm and investigate the relevance of candidate biomarkers a targeted LC-MS/MS proteomic assay was created. We applied this assay to additional CLN2 samples as well as other patients with NCL (CLN1, CLN3, CLN5, CLN6, and CLN7) and demonstrated that hexosaminidase-A, aspartate aminotransferase-1, and LAMP1 are increased in NCL samples and betaine-homocysteine S-methyltransferase-1 was specifically increased in patients with CLN2. These proteins could be used to monitor the effectiveness of future therapies aimed at treating systemic NCL disease.

15.
F1000Res ; 10: 614, 2021.
Article En | MEDLINE | ID: mdl-35106137

Classic late infantile neuronal ceroid lipofuscinosis (CLN2 disease) is caused by a deficiency of tripeptidyl-peptidase-1. In 2017, the first CLN2 enzyme replacement therapy (ERT) cerliponase alfa (Brineura) was approved by the FDA and EMA. The CLN2 disease clinical rating scale (CLN2 CRS) was developed to monitor loss of motor function, language and vision as well as frequency of generalised tonic clonic seizures. Using CLN2 CRS in an open label clinical trial it was shown that Brineura slowed down the progression of CLN2 symptoms. Neurofilament light chain (NfL) is a protein highly expressed in myelinated axons. An increase of cerebrospinal fluid (CSF) and blood NfL is found in a variety of neuroinflammatory, neurodegenerative, traumatic, and cerebrovascular diseases. We analysed CSF NfL in CLN2 patients treated with Brineura to establish whether it can be used as a possible biomarker of response to therapy. Newly diagnosed patients had CSF samples collected and analysed at first treatment dose and up to 12 weeks post-treatment to look at acute changes. Patients on a compassionate use programme who were already receiving ERT for approximately 1yr had CSF samples collected and NfL analysed over the following 1.3 years (2.3 years post-initiation of ERT) to look at long-term changes. All newly diagnosed patients we investigated with classical late infantile phenotype had high NfL levels >2000 pg/ml at start of treatment. No significant change was observed in NfL up to 12 weeks post-treatment. After one year of ERT, two out of six patients still had high NfL levels, but all patients showed a continued decrease, and all had low NfL levels after two years on ERT. NfL levels appear to correspond and predict improved clinical status of patients on ERT and could be useful as a biomarker to monitor neurodegeneration and verify disease modification in CLN2 patients on ERT.


Enzyme Replacement Therapy , Neuronal Ceroid-Lipofuscinoses , Biomarkers , Humans , Intermediate Filaments , Neuronal Ceroid-Lipofuscinoses/drug therapy , Neuronal Ceroid-Lipofuscinoses/genetics , Tripeptidyl-Peptidase 1
16.
iScience ; 23(12): 101808, 2020 Dec 18.
Article En | MEDLINE | ID: mdl-33305175

Explosion of gene therapy approaches for treating rare monogenic and common liver disorders created an urgent need for disease models able to replicate human liver cellular environment. Available models lack 3D liver structure or are unable to survive in long-term culture. We aimed to generate and test a 3D culture system that allows long-term maintenance of human liver cell characteristics. The in vitro whole-organ "Bioreactor grown Artificial Liver Model" (BALM) employs a custom-designed bioreactor for long-term 3D culture of human induced pluripotent stem cells-derived hepatocyte-like cells (hiHEPs) in a mouse decellularized liver scaffold. Adeno-associated viral (AAV) and lentiviral (LV) vectors were introduced by intravascular injection. Substantial AAV and LV transgene expression in the BALM-grown hiHEPs was detected. Measurement of secreted proteins in the media allowed non-invasive monitoring of the system. We demonstrated that humanized whole-organ BALM is a valuable tool to generate pre-clinical data for investigational medicinal products.

17.
JAMA Neurol ; 77(4): 427-434, 2020 04 01.
Article En | MEDLINE | ID: mdl-31930374

Importance: Mutations of the glucocerebrosidase gene, GBA1 (OMIM 606463), are the most important risk factor for Parkinson disease (PD). In vitro and in vivo studies have reported that ambroxol increases ß-glucocerebrosidase (GCase) enzyme activity and reduces α-synuclein levels. These observations support a potential role for ambroxol therapy in modifying a relevant pathogenetic pathway in PD. Objective: To assess safety, tolerability, cerebrospinal fluid (CSF) penetration, and target engagement of ambroxol therapy with GCase in patients with PD with and without GBA1 mutations. Interventions: An escalating dose of oral ambroxol to 1.26 g per day. Design, Setting, and Participants: This single-center open-label noncontrolled clinical trial was conducted between January 11, 2017, and April 25, 2018, at the Leonard Wolfson Experimental Neuroscience Centre, a dedicated clinical research facility and part of the University College London Queen Square Institute of Neurology in London, United Kingdom. Participants were recruited from established databases at the Royal Free London Hospital and National Hospital for Neurology and Neurosurgery in London. Twenty-four patients with moderate PD were evaluated for eligibility, and 23 entered the study. Of those, 18 patients completed the study; 1 patient was excluded (failed lumbar puncture), and 4 patients withdrew (predominantly lumbar puncture-related complications). All data analyses were performed from November 1 to December 14, 2018. Main Outcomes and Measures: Primary outcomes at 186 days were the detection of ambroxol in the CSF and a change in CSF GCase activity. Results: Of the 18 participants (15 men [83.3%]; mean [SD] age, 60.2 [9.7] years) who completed the study, 17 (8 with GBA1 mutations and 9 without GBA1 mutations) were included in the primary analysis. Between days 0 and 186, a 156-ng/mL increase in the level of ambroxol in CSF (lower 95% confidence limit, 129 ng/mL; P < .001) was observed. The CSF GCase activity decreased by 19% (0.059 nmol/mL per hour; 95% CI, -0.115 to -0.002; P = .04). The ambroxol therapy was well tolerated, with no serious adverse events. An increase of 50 pg/mL (13%) in the CSF α-synuclein concentration (95% CI, 14-87; P = .01) and an increase of 88 ng/mol (35%) in the CSF GCase protein levels (95% CI, 40-137; P = .002) were observed. Mean (SD) scores on part 3 of the Movement Disorders Society Unified Parkinson Disease Rating Scale decreased (ie, improved) by 6.8 (7.1) points (95% CI, -10.4 to -3.1; P = .001). These changes were observed in patients with and without GBA1 mutations. Conclusions and Relevance: The study results suggest that ambroxol therapy was safe and well tolerated; CSF penetration and target engagement of ambroxol were achieved, and CSF α-synuclein levels were increased. Placebo-controlled clinical trials are needed to examine whether ambroxol therapy is associated with changes in the natural progression of PD. Trial Registration: ClinicalTrials.gov identifier: NCT02941822; EudraCT identifier: 2015-002571-24.


Ambroxol/therapeutic use , Glucosylceramidase/genetics , Mutation , Parkinson Disease/drug therapy , Aged , Humans , Male , Middle Aged , Parkinson Disease/genetics , Treatment Outcome
18.
F1000Res ; 9: 1349, 2020.
Article En | MEDLINE | ID: mdl-33391730

'Long Covid', or medical complications associated with post SARS-CoV-2 infection, is a significant post-viral complication that is being more and more commonly reported in patients. Therefore, there is an increasing need to understand the disease mechanisms, identify drug targets and inflammatory processes associated with a SARS-CoV-2 infection. To address this need, we created a targeted mass spectrometry based multiplexed panel of 96 immune response associated proteins. We applied the multiplex assay to a cohort of serum samples from asymptomatic and moderately affected patients. All patients had tested positive for a SARS-CoV-2 infection by PCR and were determined to be subsequently positive for antibodies. Even 40-60 days post-viral infection, we observed a significant remaining inflammatory response in all patients. Proteins that were still affected were associated with the anti-inflammatory response and mitochondrial stress. This indicates that biochemical and inflammatory pathways within the body can remain perturbed long after SARS-CoV-2 infections have subsided even in asymptomatic and moderately affected patients.


COVID-19/complications , COVID-19/diagnosis , Inflammation/virology , Humans , Mass Spectrometry , Post-Acute COVID-19 Syndrome
19.
J Med Genet ; 57(1): 38-47, 2020 01.
Article En | MEDLINE | ID: mdl-31519711

BACKGROUND: Fabry disease is a progressive multisystemic disease, which affects the kidney and cardiovascular systems. Various treatments exist but decisions on how and when to treat are contentious. The current marker for monitoring treatment is plasma globotriaosylsphingosine (lyso-Gb3), but it is not informative about the underlying and developing disease pathology. METHODS: We have created a urine proteomic assay containing a panel of biomarkers designed to measure disease-related pathology which include the inflammatory system, lysosome, heart, kidney, endothelium and cardiovascular system. Using a targeted proteomic-based approach, a series of 40 proteins for organ systems affected in Fabry disease were multiplexed into a single 10 min multiple reaction monitoring Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) assay and using only 1 mL of urine. RESULTS: Six urinary proteins were elevated in the early-stage/asymptomatic Fabry group compared with controls including albumin, uromodulin, α1-antitrypsin, glycogen phosphorylase brain form, endothelial protein receptor C and intracellular adhesion molecule 1. Albumin demonstrated an increase in urine and could indicate presymptomatic disease. The only protein elevated in the early-stage/asymptomatic patients that continued to increase with progressive multiorgan involvement was glycogen phosphorylase brain form. Podocalyxin, fibroblast growth factor 23, cubulin and Alpha-1-Microglobulin/Bikunin Precursor (AMBP) were elevated only in disease groups involving kidney disease. Nephrin, a podocyte-specific protein, was elevated in all symptomatic groups. Prosaposin was increased in all symptomatic groups and showed greater specificity (p<0.025-0.0002) according to disease severity. CONCLUSION: This work indicates that protein biomarkers could be helpful and used in conjunction with plasma lyso-Gb3 for monitoring of therapy or disease progression in patients with Fabry disease.


Biomarkers/urine , Fabry Disease/metabolism , Proteomics , Urine/chemistry , Chromatography, Liquid , Fabry Disease/blood , Fabry Disease/urine , Female , Glycolipids/blood , Humans , Male , Sphingolipids/blood , Tandem Mass Spectrometry
20.
Biochim Biophys Acta Mol Basis Dis ; 1866(9): 165498, 2020 09 01.
Article En | MEDLINE | ID: mdl-31207290

The Neuronal Ceroid Lipofuscinoses are a group of severe and progressive neurodegenerative disorders, which generally present during childhood. With new treatments emerging on the horizon, there is a growing need to understand the specific disease mechanisms as well as identify prospective biomarkers for use to stratify patients and monitor treatment. The use of Omics technologies to NCLs has the potential to address this need. We discuss the recent use and outcomes of Omics to various forms of NCL including identification of interactomes, affected biological pathways and potential biomarker candidates. We also identify common pathways affected in NCL across the reviewed studies.


Genomics , Neuronal Ceroid-Lipofuscinoses , Proteomics , Animals , Biomarkers , Humans , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism
...