Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cell Mol Life Sci ; 81(1): 176, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598021

RESUMEN

Inflammation is a mediator of a number of chronic pathologies. We synthesized the diethyl (9Z,12Z)-octadeca-9,12-dien-1-ylphosphonate, called NKS3, which decreased lipopolysaccharide (LPS)-induced mRNA upregulation of proinflammatory cytokines (IL-1ß, IL-6 and TNF-α) not only in primary intraperitoneal and lung alveolar macrophages, but also in freshly isolated mice lung slices. The in-silico studies suggested that NKS3, being CD36 agonist, will bind to GPR120. Co-immunoprecipitation and proximity ligation assays demonstrated that NKS3 induced protein-protein interaction of CD36 with GPR120in RAW 264.7 macrophage cell line. Furthermore, NKS3, via GPR120, decreased LPS-induced activation of TAB1/TAK1/JNK pathway and the LPS-induced mRNA expression of inflammatory markers in RAW 264.7 cells. In the acute lung injury model, NKS3 decreased lung fibrosis and inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and nitric oxide (NO) production in broncho-alveolar lavage fluid. NKS3 exerted a protective effect on LPS-induced remodeling of kidney and liver, and reduced circulating IL-1ß, IL-6 and TNF-α concentrations. In a septic shock model, NKS3 gavage decreased significantly the LPS-induced mortality in mice. In the last, NKS3 decreased neuroinflammation in diet-induced obese mice. Altogether, these results suggest that NKS3 is a novel anti-inflammatory agent that could be used, in the future, for the treatment of inflammation-associated pathologies.


Asunto(s)
Endotoxemia , Animales , Ratones , Endotoxemia/inducido químicamente , Interleucina-6/genética , Lipopolisacáridos/toxicidad , Factor de Necrosis Tumoral alfa , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación , Antígenos CD36/genética , Citocinas/genética , Interleucina-1beta/genética , ARN Mensajero , Ácidos Grasos
2.
Sci Rep ; 14(1): 6644, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503857

RESUMEN

We investigated whether linoleic acid (LA) supplementation could modulate emotional behavior and microglia-related neuroinflammation. For that, male mice of C57BL/6J genetic background fed either a high-fat diet (HFD) or a standard diet (STD) for 12 weeks, were treated with a vehicle or LA solution for 5 weeks before being evaluated for emotional behavior using a battery of behavioral tests. The animals were subsequently sacrificed and their brains collected and processed for immunofluorescence staining, targeting microglia-specific calcium-binding proteins (IBA-1). Neuroinflammation severity was assessed in multiple hypothalamic, cortical and subcortical brain regions. We show an anxio-depressive-like effect of sustained HFD feeding that was neither alleviated nor worsened with LA supplementation. However, increased IBA-1 expression and microgliosis in the HFD group were largely attenuated by LA supplementation. These observations demonstrate that the anti-neuroinflammatory properties of LA are not restricted to hypothalamic areas but are also evident at the cortical and subcortical levels. This study discloses that neuroinflammation plays a role in the genesis of neuropsychiatric disorders in the context of obesity, and that LA supplementation is a useful dietary strategy to alleviate the impact of obesity-related neuroinflammation.


Asunto(s)
Ácido Linoleico , Microglía , Ratones , Masculino , Animales , Ácido Linoleico/farmacología , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Obesidad/etiología , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos
3.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37373472

RESUMEN

The sense of taste determines the choice of nutrients and food intake and, consequently, influences feeding behaviors. The taste papillae are primarily composed of three types of taste bud cells (TBC), i.e., type I, type II, and type III. The type I TBC, expressing GLAST (glutamate--aspartate transporter), have been termed as glial-like cells. We hypothesized that these cells could play a role in taste bud immunity as glial cells do in the brain. We purified type I TBC, expressing F4/80, a specific marker of macrophages, from mouse fungiform taste papillae. The purified cells also express CD11b, CD11c, and CD64, generally expressed by glial cells and macrophages. We further assessed whether mouse type I TBC can be polarized toward M1 or M2 macrophages in inflammatory states like lipopolysaccharide (LPS)-triggered inflammation or obesity, known to be associated with low-grade inflammation. Indeed, LPS-treatment and obesity state increased TNFα, IL-1ß, and IL-6 expression, both at mRNA and protein levels, in type I TBC. Conversely, purified type I TBC treated with IL-4 showed a significant increase in arginase 1 and IL-4. These findings provide evidence that type I gustatory cells share many features with macrophages and may be involved in oral inflammation.


Asunto(s)
Papilas Gustativas , Ratones , Animales , Papilas Gustativas/metabolismo , Citocinas/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Interleucina-4/farmacología , Interleucina-4/metabolismo , Monocitos/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Obesidad/metabolismo , Gusto
4.
Dose Response ; 21(1): 15593258221150704, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36636631

RESUMEN

Colorectal cancer is considered the second most deadly cancer in the world. Studies have indicated that diet can prevent the risk of developing colorectal cancer. Recently, there has been an increasing interest in polyphenols due to their plausible effect on cancer prevention and treatment. p-Coumaric acid (p-CouA), a phenolic compound, is a cinnamic acid derivative found in several fruits, vegetables, and herbs. A growing body of evidence suggests that p-CouA may be an effective agent for preventing and managing colorectal cancer. In this current review, we briefly highlight the bioavailability of p-CouA. We also provide an up-to-date overview of molecular mechanisms underlying its anticancer effects, focusing on anti-inflammatory and antioxidant potentials, apoptosis induction, and cell cycle blockade. Finally, we discuss the impact of p-CouA on clonogenicity and multidrug resistance of colorectal cancer cells.

5.
Cell Mol Gastroenterol Hepatol ; 15(3): 633-663, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36410709

RESUMEN

BACKGROUND & AIMS: The spontaneous preference for dietary lipids is principally regulated by 2 lingual fat taste receptors, CD36 and GPR120. Obese animals and most of human subjects exhibit low orosensory perception of dietary fat because of malfunctioning of these taste receptors. Our aim was to target the 2 fat taste receptors by newly synthesized high affinity fatty acid agonists to decrease fat-rich food intake and obesity. METHODS: We synthesized 2 fat taste receptor agonists (FTA), NKS-3 (CD36 agonist) and NKS-5 (CD36 and GPR120 agonist). We determined their molecular dynamic interactions with fat taste receptors and the effect on Ca2+ signaling in mouse and human taste bud cells (TBC). In C57Bl/6 male mice, we assessed their gustatory perception and effects of their lingual application on activation of tongue-gut loop. We elucidated their effects on obesity and its related parameters in male mice fed a high-fat diet. RESULTS: The two FTA, NKS-3 and NKS-5, triggered higher Ca2+ signaling than a dietary long-chain fatty acid in human and mouse TBC. Mice exhibited a gustatory attraction for these compounds. In conscious mice, the application of FTA onto the tongue papillae induced activation of tongue-gut loop, marked by the release of pancreato-bile juice into collecting duct and cholecystokinin and peptide YY into blood stream. Daily intake of NKS-3 or NKS-5 via feeding bottles decreased food intake and progressive weight gain in obese mice but not in control mice. CONCLUSIONS: Our results show that targeting fat sensors in the tongue by novel chemical fat taste agonists might represent a new strategy to reduce obesity.


Asunto(s)
Papilas Gustativas , Humanos , Masculino , Ratones , Animales , Papilas Gustativas/fisiología , Gusto/fisiología , Ratones Obesos , Preferencias Alimentarias/fisiología , Ácidos Grasos , Grasas de la Dieta/efectos adversos , Aumento de Peso , Obesidad/tratamiento farmacológico , Obesidad/etiología
6.
Diabetol Metab Syndr ; 14(1): 117, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982478

RESUMEN

BACKGROUND: Obesity and related metabolic disorders are associated with genetic and epigenetic alterations. In this study, we have examined the association between polymorphisms and hypermethylation of the CD36 gene promoter with obesity in Senegalese females with or without type 2 diabetes mellitus to identify novel molecular markers of these pathologies (obesity and type 2 diabetes mellitus). MATERIALS AND METHODS: The study was conducted in Senegal with healthy lean control, obese, and obese diabetic (age; 49.98 years ± 7.52 vs 50.50 years ± 8.76 vs 51.06 ± 5.78, and body mass index (BMI); 24.19 kg/m2 ± 2.74 vs 34.30 kg/m2 ± 4.41 vs 33.09 kg/m2 ± 4.30). We determined three genetic polymorphisms of CD36 i.e., rs1761667, rs1527483, and rs3211867 by real-time polymerase chain reaction, and methylation of CPG islands of CD36 was assessed by methylation-specific polymerase chain reaction (MS-PCR) in DNA isolated from peripheral blood of each participant. Plasma sCD36 levels and DNA methyltransferase 3a (DNMT3a) levels were determined by enzyme-linked immunosorbent assay (ELISA). According to the standard laboratory protocol, all biochemical parameters were analyzed from fasting serum or plasma. RESULTS: For rs1761667, obese and obese diabetic subjects had statistically significant different parameters depending on the genotypic distribution. These were waist size for obese and HDL cholesterol for obese diabetic, they were significantly higher in subjects harboring GG genotype of rs1761667 (respectively p = 0.04 and p = 0.04). For rs3211867, obese subjects harboring the AA/AC genotype had significantly higher BMI (p = 0.02) and total cholesterol (p = 0.03) than obese subjects harboring the CC genotype. At the same time, the obese diabetic subjects harboring the AA/AC genotype had total cholesterol levels significantly higher than the obese diabetic subjects harboring the CC genotype (p = 0.03). For rs1527483, only the control subjects had statistically significant different parameters depending on the genotypic distribution. The control subjects harboring the GG genotype had a significantly higher BMI than the control subjects harboring the AA/AG genotype (p = 0.003). The CD36 gene methylation was significantly 1.36 times more frequent in obese and obese diabetic compared to lean control (RR = 1.36; p = 0.04). DNMT3a levels were higher in subjects with CD36 gene methylation than in subjects without CD36 gene methylation in each group. Obese diabetic subjects with CD36 gene methylation had significantly fewer plasmas sCD36 (p = 0.03) and more LDL-cholesterol (p = 0.01) than obese diabetic subjects without CD36 gene methylation. In the control group, an increase in sCD36 levels would be associated with a decrease in total cholesterol and triglyceride levels (coef = -7647.56 p = 0.01 and coef = -2528.50 p = 0.048, respectively) would be associated with an increase in LDL cholesterol levels. For the obese group, an increase in sCD36 levels would be associated with an increase in fasting insulin levels (coef = 490.99 p = 0.02) and a decrease in glycated hemoglobin levels (coef = -1196.26 p = 0.03). An increase in the sCD36 levels would be associated with an increase in the triglyceride levels in the obese diabetic group (coef = 9937.41 p = 0.02). The AA/AC genotype of SNP rs3211867 polymorphism was significantly associated with CD36 gene methylation in the control and obese diabetic groups (respectively p = 0.05, p = 0.002; 95% CI). CONCLUSION: These observations suggest that polymorphisms and epigenetic changes in CD36 gene promoters may be implicated in the onset of obesity and its related complication type 2 diabetes mellitus.

7.
Arch Physiol Biochem ; 128(4): 1001-1009, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32207345

RESUMEN

The present study evaluates the protective effect of spirulina against diet-induced obesity and metabolic disorders in Psammomys obesus, an animal model of metabolic syndrome. Psammomys obesus lives on a low-energy diet, in order to remain healthy. However, under a standard laboratory chow diet (SLCD), this animal exhibits insulin resistance, which occurs as a result of obesity. Psammomys obesus was maintained on SLCD, in order to evaluate the effect of spirulina on obesity development with a particular focus on glucose and lipid metabolism, as well as the mRNA expression of some pro-inflammatory cytokines. After 12 weeks of treatment with spirulina, there was a significant reduction in body weight gain, plasma glucose, insulin and triglyceride levels. There was also a significant reduction in the mRNA expression of genes involved in lipogenesis and inflammation. Spirulina improved insulin sensitivity, glucose and lipid metabolism. These findings highlight the positive effect of spirulina on weight maintenance.


Asunto(s)
Resistencia a la Insulina , Spirulina , Animales , Glucemia/metabolismo , Dieta , Modelos Animales de Enfermedad , Regulación hacia Abajo , Gerbillinae/genética , Gerbillinae/metabolismo , Glucosa , Insulina , Resistencia a la Insulina/fisiología , Lipogénesis/genética , Obesidad/metabolismo , ARN Mensajero/metabolismo
8.
Arch Physiol Biochem ; 128(6): 1461-1466, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32536220

RESUMEN

BACKGROUND: The microRNAs have come up as crucial mediators of energy balance and metabolic control. CD36 is potential biomarker of obesity and metabolic syndrome. This study investigates the concentration of miR-146a and miR-21 and CD 36 in blood samples of obese and healthy young participants. We assessed the association of mir-146a and mir-21 with inflammatory states in Algerian young participants. METHODS: Our study included male obese, without co-morbidities (n = 29), and healthy participants (n = 13). miRNA and CD36 expression was measured by real-time RT-PCR, respectively, in serum and blood. RESULTS: miR-146a and miR-21 concentrations were significantly decreased; however, CD36 expression was increased in obese subjects. Interestingly, miR-146a and miR-21 concentrations were negatively correlated to IL-6, TNF-α, and CD36 in obese participants. CONCLUSION: We demonstrate that the downregulation of miR-146a and miR-21 was associated with upregulation of inflammatory state and increased CD36 expression in obese participants.


Asunto(s)
MicroARNs , Factor de Necrosis Tumoral alfa , Humanos , Masculino , Argelia , Biomarcadores , Citocinas/genética , Interleucina-6 , Obesidad/genética , Factor de Necrosis Tumoral alfa/genética
9.
Handb Exp Pharmacol ; 275: 247-270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33547589

RESUMEN

During the last couples of years, a number of studies have increasingly accumulated on the gustatory perception of dietary fatty acids in rodent models and human beings in health and disease. There is still a debate to coin a specific term for the gustatory perception of dietary fatty acids either as the sixth basic taste quality or as an alimentary taste. Indeed, the psycho-physical cues of orosensory detection of dietary lipids are not as distinctly perceived as other taste qualities like sweet or bitter. The cellular and molecular pharmacological mechanisms, triggered by the binding of dietary long-chain fatty acids (LCFAs) to tongue taste bud lipid receptors like CD36 and GPR120, involve Ca2+ signaling as other five basic taste qualities. We have not only elucidated the role of Ca2+ signaling but also identified different components of the second messenger cascade like STIM1 and MAP kinases, implicated in fat taste perception. We have also demonstrated the implication of Calhm1 voltage-gated channels and store-operated Ca2+ (SOC) channels like Orai1, Orai1/3, and TRPC3 in gustatory perception of dietary fatty acids. We have not only employed siRNA technology in vitro and ex vivo on tissues but also used animal models of genetic invalidation of STIM1, ERK1, Orai1, Calhm1 genes to explore their implications in fat taste signal transduction. Moreover, our laboratory has also demonstrated the importance of LCFAs detection dysfunction in obesity in animal models and human beings.


Asunto(s)
Papilas Gustativas , Percepción del Gusto , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Ácidos Grasos/metabolismo , Humanos , Gusto/fisiología , Papilas Gustativas/metabolismo , Percepción del Gusto/fisiología
11.
Molecules ; 26(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673390

RESUMEN

Nutrition transition can be defined as shifts in food habits, and it is characterized by high-fat (chiefly saturated animal fat), hypercaloric and salty food consumption at the expense of dietary fibers, minerals and vitamins. Western dietary patterns serve as a model for studying the impact of nutrition transition on civilization diseases, such as obesity, which is commonly associated with oxidative stress and inflammation. In fact, reactive oxygen species (ROS) overproduction can be associated with nuclear factor-κB (NF-κB)-mediated inflammation in obesity. NF-κB regulates gene expression of several oxidant-responsive adipokines including tumor necrosis factor-α (TNF-α). Moreover, AMP-activated protein kinase (AMPK), which plays a pivotal role in energy homeostasis and in modulation of metabolic inflammation, can be downregulated by IκB kinase (IKK)-dependent TNF-α activation. On the other hand, adherence to a Mediterranean-style diet is highly encouraged because of its healthy dietary pattern, which includes antioxidant nutraceuticals such as polyphenols. Indeed, hydroxycinnamic derivatives, quercetin, resveratrol, oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities, exert anti-obesity proprieties. In this review, we highlight the impact of the most common polyphenols from Mediterranean foods on molecular mechanisms that mediate obesity-related oxidative stress and inflammation. Hence, we discuss the effects of these polyphenols on a number of signaling pathways. We note that Mediterranean diet (MedDiet) dietary polyphenols can de-regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and NF-κB-mediated oxidative stress, and metabolic inflammation. MedDiet polyphenols are also effective in upregulating downstream effectors of several proteins, chiefly AMPK.


Asunto(s)
Antioxidantes/metabolismo , Dieta Mediterránea , Obesidad/metabolismo , Polifenoles/uso terapéutico , Antiinflamatorios/uso terapéutico , Fibras de la Dieta/uso terapéutico , Humanos , FN-kappa B/genética , Obesidad/dietoterapia , Obesidad/genética , Resveratrol/metabolismo
12.
Biochimie ; 181: 169-175, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33333171

RESUMEN

We investigated whether docosahexaenoic acid (DHA), a dietary n-3 fatty acid, modulates calcium (Ca2+) signaling and cell cycle progression in human Jurkat T-cells. Our study demonstrates that DHA inhibited Jurkat T-cell cycle progression by blocking their passage from S phase to G2/M phase. In addition, DHA decreased the plasma membrane expression of TRPC3 and TRPC6 calcium channels during T-cell proliferation. Interestingly, this fatty acid increased plasma membrane expression of TRPC6 after 24 h of mitogenic stimulation by phorbol-13-myristate-12-acetate (PMA) and ionomycin. These variations in the membrane expression of TRPC3 and TRPC6 channels were not directly correlated with the mRNA expression, indicating that it was a post-translational phenomenon. DHA increased free intracellular calcium concentrations, [Ca2+]i, via opening TRPC3 and TRPC6 channels. We conclude that the anti-proliferative effect of DHA might involve the modulation of TRPC3 and TRPC6 channels in human T-cells.


Asunto(s)
Membrana Celular/metabolismo , Ácidos Docosahexaenoicos/farmacología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Linfocitos T/metabolismo , Canales Catiónicos TRPC/biosíntesis , Canal Catiónico TRPC6/biosíntesis , Humanos , Ionomicina/farmacología , Células Jurkat , Acetato de Tetradecanoilforbol/farmacología
13.
Arch Physiol Biochem ; 127(2): 119-126, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31155964

RESUMEN

CONTEXT: Zizyphus lotus L., ZL is a Mediterranean plant and widely consumed for its beneficial medicinal properties. Objective: We assessed the effects of ZL fruit on diet-induced obesity. Materials and methods: Male C57BL/6j mice were divided into three groups. Each group received either a standard diet or a high-fat diet, HFD (30% of palm oil, w/v) or a HFD-supplemented with ZL fruit powder (10%, w/w) for six weeks, followed by a six weeks period, in which animals were maintained on the HFD and ZL aqueous extract (1%, w/v). We measured plasma parameters and assessed the expression of key genes involved in energy metabolism and inflammation. Results: ZL fruit improved glycaemia, lipids concentrations and inflammation in obese mice. Discussion and conclusion: Our investigations showed that ZL fruit improved glucose tolerance, dyslipidaemia and fatty liver disease, but not the severity of HFD-induced obesity in mice.


Asunto(s)
Frutas/química , Inflamación/tratamiento farmacológico , Resistencia a la Insulina , Obesidad/complicaciones , Fitoterapia/métodos , Extractos Vegetales/farmacología , Ziziphus/química , Animales , Glucemia/análisis , Inflamación/etiología , Inflamación/patología , Lípidos/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos
14.
Acta Physiol (Oxf) ; 231(2): e13554, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32882106

RESUMEN

AIM: The pathogenesis of obesity has been associated with high intake of dietary fat, and some recent studies have explored the cellular mechanisms of oro-sensory detection of dietary fatty acids. We further assessed the role of transient receptor potential canonical (TRPC) channels in oro-sensory perception of dietary lipids. METHODS: We determined by RT-qPCR and western blotting the expression of TRPC3/6/7 channels in mouse fungiform taste bud cells (mTBC). Immunocytochemistry was used to explore whether TRPC3 channels were co-expressed with fatty acid receptors. We employed wild-type (WT) mTBC, and those transfected with small interfering RNAs (siRNAs) against TRPC3 or STIM1. Ca2+ signalling was studied in TBC from TRPC3-/- mice and their WT littermates. RESULTS: We demonstrate that mouse fungiform taste bud cells (mTBC) express TRPC3, but not TRPC6 or TRPC7 channels, and their inactivation by siRNA or experiments on TBC from TRPC3-/- mice brought about a decrease in fatty acid-induced gustatory Ca2+ signalling, coupled with taste bud CD36 lipid sensor. TRPC3 channel activation was found to be under the control of STIM1 in lingual mTBC. Behavioural studies showed that spontaneous preference for a dietary long-chain fatty acid was abolished in TRPC3-/- mice, and in mice wherein lingual TRPC3 expression was silenced by employing siRNA. CONCLUSION: We report that lingual TRPC3 channels are critically involved in fat taste perception.


Asunto(s)
Preferencias Alimentarias , Percepción del Gusto , Animales , Grasas de la Dieta , Lípidos , Ratones , Canales Catiónicos TRPC/genética
15.
Nutrients ; 14(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35011070

RESUMEN

Leptin, an anorectic hormone, regulates food intake, energy expenditure and body weight. We assessed the implication of tongue leptin in the modulation of oro-sensory detection of dietary fatty acids in mice. The RT-PCR analysis showed that mRNA encoding leptin and leptin receptor (Ob-Rb) was expressed in mice taste bud cells (TBC). Confocal microscopic studies showed that the lipid sensor CD36 was co-expressed with leptin in mice TBC. Silencing of leptin or Ob-Rb mRNA in tongue papillae upregulated preference for a long-chain fatty acid (LCFA), i.e., linoleic acid (LA), in a two-bottle paradigm in mice. Furthermore, tongue leptin application decreased the preference for the LCFA. These results suggest that tongue leptin exerts an inhibitory action on fatty acid preference. In isolated mice TBC, leptin decreased LCFA-induced increases in free intracellular calcium concentrations, [Ca2+]i. Leptin and LCFA induced the phosphorylation of ERK1/2 and STAT-3 and there were no additive or opposite effects of the two agents on the degree of phosphorylation. However, leptin, but not the LCFA, induced phosphoinositide-3-kinase (PI-3-K)-dependent Akt phosphorylation in TBC. Furthermore, leptin induced hyperpolarization, whereas LCFA induced depolarization in TBC. Our study demonstrates that tongue leptin exerts an inhibitory action on oro-sensory detection of a dietary fatty acid by interfering with Ca2+ signaling and membrane potential in mice TBC.


Asunto(s)
Grasas de la Dieta/análisis , Ácidos Grasos/análisis , Leptina/fisiología , Percepción del Gusto/fisiología , Lengua/química , Animales , Antígenos CD36/genética , Señalización del Calcio/fisiología , Grasas de la Dieta/administración & dosificación , Ácidos Grasos/administración & dosificación , Expresión Génica , Silenciador del Gen , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/análisis , Receptores de Leptina/genética , Papilas Gustativas/química , Papilas Gustativas/fisiología
16.
J Clin Med ; 9(7)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650509

RESUMEN

Through a recent upsurge of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, the clinical assessment of most of the coronavirus disease 19 (COVID-19) patients clearly presents a health condition with the loss of oro-naso-sensory (ONS) perception, responsible for the detection of flavor and savor. These changes include anosmia and dysgeusia. In some cases, these clinical manifestations appear even before the general flu-like symptoms, e.g., sore throat, thoracic oppression and fever. There is no direct report available on the loss of these chemical senses in obese COVID-19 patients. Interestingly, obesity has been shown to be associated with low ONS cues. These alterations in obese subjects are due to obesity-induced altered expression of olfacto-taste receptors. Besides, obesity may further aggravate the SARS-CoV-2 infection, as this pathology is associated with a high degree of inflammation/immunosuppression and reduced protection against viral infections. Hence, obesity represents a great risk factor for SARS-CoV-2 infection, as it may hide the viral-associated altered ONS symptoms, thus leading to a high mortality rate in these subjects.

17.
J Clin Med ; 9(6)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585828

RESUMEN

BACKGROUND: The spontaneous preference for dietary fat is regulated by two lingual lipid sensors (CD36 and GPR120) in humans and rodents. Our objective was to investigate whether obesity in children is associated with methylation of lipid sensor genes, and whether this alteration was implicated in altered gustatory perception of fat and bitter and increased preference of palatable foods. METHODS: School children were recruited and classified according to their body mass index (BMI) z-score into two groups: obese and lean children. The detection of orosensory perception for oleic acid and 6-n-propylthiouracil was assessed by using a 3-alternative forced-choice test. After blood DNA extraction, methylation patterns were investigated by methylation-specific PCR. The children were also subjected to a food habit questionnaire. RESULTS: Obese children showed higher lipid and bitter detection thresholds than lean children. Besides, more obese children presented higher methylation level of the CpG sites than lean participants. Interestingly, CD36 and GPR120 gene methylation was associated with high lipid detection thresholds in obese participants. The obese participants preferred highly palatable fat-rich food items, associated with CD36 and GPR120 gene methylation. CONCLUSION: Epigenetic changes in CD36 and GPR120 genes might contribute to low orosensory perception of fat and bitter taste, and might be, consequently, critically involved in obesity in children.

18.
J Lipid Res ; 61(2): 133-142, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31806728

RESUMEN

GPR120 is implicated as a lipid receptor in the oro-sensory detection of dietary fatty acids. However, the effects of GPR120 activation on dietary fat intake or obesity are not clearly understood. We investigated to determine whether the binding of TUG891, a novel GPR120 agonist, to lingual GPR120 modulates fat preference in mice. We explored the effects of TUG891 on obesity-related hormones and conducted behavioral choice tests on mice to better understand the physiologic relevance of the action of TUG891. In cultured mouse and human taste bud cells (TBCs), TUG891 induced a rapid increase in Ca2+ by acting on GPR120. A long-chain dietary fatty acid, linoleic acid (LA), also recruited Ca2+ via GPR120 in human and mouse TBCs. Both TUG891 and LA induced ERK1/2 phosphorylation and enhanced in vitro release of glucagon-like peptide-1 from cultured human and mouse TBCs. In situ application of TUG891 onto the tongue of anesthetized mice triggered the secretion of pancreatobiliary juice, probably via the tongue-brain-gut axis. Furthermore, lingual application of TUG891 altered circulating concentrations of cholecystokinin and adipokines, associated with decreased circulating LDL, in conscious mice. In behavioral tests, mice exhibited a spontaneous preference for solutions containing either TUG891 or LA instead of a control. However, addition of TUG891 to a solution containing LA significantly curtailed fatty acid preference. Our study demonstrates that TUG891 binds to lingual GPR120 receptors, activates the tongue-brain-gut axis, and modulates fat preference. These findings may support the development of new fat taste analogs that can change the approach to obesity prevention and treatment.


Asunto(s)
Compuestos de Bifenilo/farmacología , Encéfalo/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Fenilpropionatos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Percepción del Gusto/efectos de los fármacos , Lengua/efectos de los fármacos , Animales , Encéfalo/metabolismo , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/efectos de los fármacos , Papilas Gustativas/metabolismo , Lengua/metabolismo
19.
J Nutr Biochem ; 76: 108298, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31812910

RESUMEN

We investigated the implication of Takeda G protein-coupled receptor 5 (TGR5) in fat preference and fat sensing in taste bud cells (TBC) in C57BL/6 wild-type (WT) and TGR5 knock out (TGR5-/-) male mice maintained for 20 weeks on a high-fat diet (HFD). We also assessed the implication of TGR5 single nucleotide polymorphism (SNP) in young obese humans. The high-fat diet (HFD)-fed TGR5-/- mice were more obese, marked with higher liver weight, lipidemia and steatosis than WT obese mice. The TGR5-/- obese mice exhibited high daily food/energy intake, fat mass and inflammatory status. WT obese mice lost the preference for dietary fat, but the TGR5-/- obese mice exhibited no loss towards the attraction for lipids. In lingual TBC, the fatty acid-triggered Ca2+ signaling was decreased in WT obese mice; however, it was increased in TBC from TGR5-/- obese mice. Fatty acid-induced in vitro release of GLP-1 was higher, but PYY concentrations were lower, in TBC from TGR5-/- obese mice than those in WT obese mice. We noticed an association between obesity and variations in TGR5 rs11554825 SNP. Finally, we can state that TGR5 modulates fat eating behavior and obesity.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Preferencias Alimentarias , Lípidos/química , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animales , Glucemia/metabolismo , Calcio/metabolismo , Dieta Alta en Grasa , Grasas de la Dieta , Modelos Animales de Enfermedad , Hígado Graso , Inflamación , Insulina/metabolismo , Lipopolisacáridos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Obesidad/genética , Polimorfismo de Nucleótido Simple
20.
Cell Death Dis ; 10(7): 485, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217433

RESUMEN

Limitation of 5-fluorouracil (5-FU) anticancer efficacy is due to IL-1ß secretion by myeloid-derived suppressor cells (MDSC), according to a previous pre-clinical report. Release of mature IL-1ß is a consequence of 5-FU-mediated NLRP3 activation and subsequent caspase-1 activity in MDSC. IL-1ß sustains tumor growth recovery in 5-FU-treated mice. Docosahexaenoic acid (DHA) belongs to omega-3 fatty acid family and harbors both anticancer and anti-inflammatory properties, which could improve 5-FU chemotherapy. Here, we demonstrate that DHA inhibits 5-FU-induced IL-1ß secretion and caspase-1 activity in a MDSC cell line (MSC-2). Accordingly, we showed that DHA-enriched diet reduces circulating IL-1ß concentration and tumor recurrence in 5-FU-treated tumor-bearing mice. Treatment with 5-FU led to JNK activation through ROS production in MDSC. JNK inhibitor SP600125 as well as DHA-mediated JNK inactivation decreased IL-1ß secretion. The repression of 5-FU-induced caspase-1 activity by DHA supplementation is partially due to ß-arrestin-2-dependent inhibition of NLRP3 inflammasome activity but was independent of JNK pathway. Interestingly, we showed that DHA, through ß-arrestin-2-mediated inhibition of JNK pathway, reduces V5-tagged mature IL-1ß release induced by 5-FU, in MDSC stably overexpressing a V5-tagged mature IL-1ß form. Finally, we found a negative correlation between DHA content in plasma and the induction of caspase-1 activity in HLA-DR- CD33+ CD15+ MDSC of patients treated with 5-FU-based chemotherapy, strongly suggesting that our data are clinical relevant. Together, these data provide new insights on the regulation of IL-1ß secretion by DHA and on its potential benefit in 5-FU-based chemotherapy.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Fluorouracilo/farmacología , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Caspasa 1/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Ácidos Docosahexaenoicos/uso terapéutico , Femenino , Fluorouracilo/uso terapéutico , Humanos , Ratones , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Arrestina beta 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...