Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Biomedicines ; 10(5)2022 May 10.
Article En | MEDLINE | ID: mdl-35625842

Acute kidney injury (AKI) poses an increased risk factor for new AKI episodes, progression to chronic kidney disease, and death. A worsened evolution has been linked to an incomplete renal repair beyond the apparent functional recovery based on plasma creatinine (pCr) normalization. However, structural sequelae pass largely unnoticed due to the absence of specific diagnostic tools. The urinary kidney injury molecule 1 (KIM-1) participates in renal tissue damage and repair and is proposed as a biomarker of early and subclinical AKI. Thus, we study in this paper the evolution of KIM-1 urinary excretion alongside renal tissue sequelae after an intrinsic AKI episode induced by cisplatin in Wistar rats. Creatinine clearance, pCr, proteinuria and the fractional excretion of Na+ and glucose were used to monitor renal function. Renal tissue damage was blindly scored in kidney specimens stained with hematoxylin-eosin and periodic acid-Schiff. KIM-1 urinary excretion and renal mRNA expression were also assessed. Finally, we analyzed urinary KIM-1 in patients apparently recovered from AKI. Our results show that, after the normalization of the standard markers of glomerular filtration and tubular function, the extent of persistent histological findings of tissue repair correlates with the renal expression and urinary level of KIM-1 in rats. In addition, KIM-1 is also elevated in the urine of a significant fraction of patients apparently recovered from an AKI. Besides its potential utility in the early and subclinical diagnosis of renal damage, this study suggests a new application of urinary KIM-1 in the non-invasive follow-up of renal repair after AKI.

2.
Sci Rep ; 11(1): 21183, 2021 10 27.
Article En | MEDLINE | ID: mdl-34707157

Acute kidney injury (AKI) is a risk factor for new AKI episodes, chronic kidney disease, cardiovascular events and death, as renal repair may be deficient and maladaptive, and activate proinflammatory and profibrotic signals. AKI and AKI recovery definitions are based on changes in plasma creatinine, a parameter mostly associated to glomerular filtration, but largely uncoupled from renal tissue damage. The evolution of structural and functional repair has been incompletely described. We thus aimed at identifying subclinical sequelae persisting after recovery from cisplatin-induced AKI in rats. Compared to controls, after plasma creatinine recovery, post-AKI kidneys showed histological alterations and attendant susceptibility to new AKI episodes. Tubular function (assessed by the furosemide stress test, FST) also remained affected. Lingering parenchymal and functional subclinical alterations were paralleled by tapering, but abnormally high levels of urinary albumin, transferrin, insulin-like growth factor-binding protein 7 (IGFBP7), tissue inhibitor of metalloproteinases-2 (TIMP-2) and, especially, the [TIMP-2]*[IGFBP7] product. As subclinical surrogates of incomplete renal recovery, the FST and the urinary [TIMP-2]*[IGFBP7] product provide two potential diagnostic tools to monitor the sequelae and kidney vulnerability after the apparent recovery from AKI.


Acute Kidney Injury/urine , Insulin-Like Growth Factor Binding Proteins/urine , Tissue Inhibitor of Metalloproteinase-2/urine , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Animals , Antineoplastic Agents/toxicity , Biomarkers/urine , Cisplatin/toxicity , Kidney/drug effects , Kidney/pathology , Kidney/physiopathology , Male , Rats , Rats, Wistar
...