Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Phytopathology ; 112(11): 2426-2439, 2022 Nov.
Article En | MEDLINE | ID: mdl-35722890

Downy mildew-free hop plantlets and rhizomes are essential to limit the introduction of this destructive pathogen, Pseudoperonospora humuli, into hopyards. The objective of this research was to determine which DNA-based diagnostic tools are optimal for P. humuli detection in plant tissue. Quantitative real-time PCR (qPCR) assays with TaqMan probes for nuclear (c125015.3e1) and mitochondrial (orf359) DNA loci were developed and tested side by side. A recombinase polymerase amplification (RPA) assay was designed based on the orf359 DNA locus. The mitochondrial qPCR assay had a 10-fold lower limit of detection (100 fg of genomic DNA) and was 60% more effective in detecting P. humuli in asymptomatic stems than the nuclear-based assay. Both qPCR assays had linear standard curves (R2 > 0.99) but lacked the quantitative precision to differentiate leaf infections beyond 1 day postinoculation. A wide range of Cq values (≥4.9) in standardized tests was observed among isolates, suggesting that the number of mitochondria and nuclear DNA targets can vary. The absence of P. humuli DNA in symptomatic rhizomes was explained, in part, by the detection of Phytophthora DNA. However, the Phytophthora-specific atp9-nad9 assay cross-reacted with P. humuli, leading to false positive amplification. Sensitivity in the RPA assay was reduced by crude plant DNA extract. Improvements to the objectivity of calling positive amplifications and determining the onset of amplification from RPA fluorescence data were realized by applying the first and second derivatives, respectively. The orf359 qPCR assay is specific and sensitive, making it well suited for P. humuli diagnostics in plant tissue.


Humulus , Peronospora , Phytophthora , Plant Diseases , Phytophthora/genetics , Recombinases , Plants
2.
Phytopathology ; 112(10): 2110-2125, 2022 Oct.
Article En | MEDLINE | ID: mdl-35585721

Management of cucurbit downy mildew (CDM) caused by Pseudoperonospora cubensis, relies on an intensive fungicide program. In Michigan, CDM occurs annually due to an influx of airborne sporangia and timely alerts of airborne inoculum can assist growers in assessing the need to initiate fungicide sprays. This research aimed to improve the specific detection of airborne P. cubensis sporangia by adapting quantitative real-time polymerase chain reaction (qPCR) assays to distinguish among P. cubensis clades I and II and P. humuli in spore trap samples from commercial production sites and research plots. We also evaluated the suitability of impaction spore traps compared with Burkard traps for detection of airborne sporangia. A multiplex qPCR assay improved the specificity of P. cubensis clade II detection accelerating the assessment of field spore trap samples. After 2 years of monitoring, P. cubensis clade II DNA was detected in spore trap samples before CDM symptoms were first observed in cucumber fields (July and August), while P. cubensis clade I DNA was not detected in air samples before or after the disease onset. In some commercial cucumber fields, P. humuli DNA was detected throughout the growing season. The Burkard spore trap appeared to be better suited for recovery of sporangia at low concentrations than the impaction spore trap. This improved methodology for the monitoring of airborne Pseudoperonospora spp. sporangia could be used as part of a CDM risk advisory system to time fungicide applications that protect cucurbit crops in Michigan.


Cucumis sativus , Fungicides, Industrial , Oomycetes , Peronospora , DNA, Mitochondrial , Disease Management , Fungicides, Industrial/pharmacology , Genetic Markers , Oomycetes/genetics , Peronospora/genetics , Plant Diseases/prevention & control , Sporangia
3.
Plant Dis ; 2021 Nov 19.
Article En | MEDLINE | ID: mdl-34798784

Halo blight of hop caused by Diaporthe humulicola has recently been reported in Michigan and Connecticut (Higgins et al. 2021, Allan-Perkins et al 2020). In August 2020 growers in Quebec, Canada reported necrotic foliar lesions and desiccation of the hop strobile (cone) on Chinook and Nugget cultivars. The foliar lesions were dry concentric circles with a chlorotic halo surrounding the lesions; no pycnidia were observed on leaves or cones. Up to 100% of the infected bract tissue was dry and easily shattered, the grower estimated that more than 90% of the plants in the hopyard exhibited symptoms. Twenty-six isolates were obtained from surface-sterilized leaf and cone tissue by plating the leading edge of lesions on potato dextrose agar. Fungal isolates were hyphal tipped and were incubated at 22°C with a 12 h photoperiod. After 21-days, all cultures were white to beige with pycnidia. DNA was extracted from cultures using the MagMAX Plant DNA Isolation Kit (Applied Biosystems, Foster City, CA). DNA amplification of a representative isolate (CD6C) was performed with primers ITS1/ITS4 (White et al. 1990) for the internal transcribed spacer (ITS), CYLH3F/H3-1b (Glass and Donaldson 1995) for histone 3 (HIS), and Ef1728f/EF1-986R (Carbone and Kohn 1999) for translation elongation factor 1-α (TEF). Amplification primers were used for bidirectional Sanger sequencing, reads were assembled using Geneious Prime (Biomatters, New Zealand), and identified using NCBI BLAST. BLAST results showed that the sequences for TEF, ITS, and HIS all had 100% pairwise identity to Diaporthe sp. 1-MI (MT909101, MT909099, MT909093, OK001342, MZ934713, OK001341). Futhermore, BLAST results showed that ITS and HIS have 100% pairwise identity D. humulicola (MN152929, MN180214). The TEF sequence also had 99.7% pairwise identity to D. humulicola (MN180209). Koch's postulates were conducted by inoculating six 3-mo-old 'Chinook' plants with conidia harvested from 28-day-old cultures and spraying 50 ml of inoculum (6 x 105 conidia/ml) or water to each plant. Plants were then stored in a greenhouse at 100% relative humidity at 22°C with a 14-h photo period. Lesions appeared on the adaxial side of the leaf after 21 days. D. humulicola was re-isolated from all infected leaf tissue, but not from any water inoculated plants and identified by conidial morphology using descriptions from Higgins et al. (2021). So far, Diaporthe sp. 1-MI appears to be synonymous with Diaporthe humulicola, but currently two names are being utilized (i.e. Diaporthe leaf spot and halo blight). In Higgins et al., (2021) it was proposed that the name halo blight might be more appropriate because disease symptoms are not confined to the leaves and cause significant blighting of cones. Halo blight caused by D. humulicola appears widespread in Michigan and Canada and may become an issue in other eastern North American growing regions with humid conditions.

4.
Plant Dis ; 105(4): 859-872, 2021 Apr.
Article En | MEDLINE | ID: mdl-32840437

Michigan's hop acreage ranks fourth nationally, but the state's growers contend with unique disease challenges resulting from frequent rainfall and high humidity. In August 2018, a Michigan hop grower reported necrosis and blighting of foliage and shattering of cones resulting in yield loss. Irregular-shaped lesions developed on leaves, surrounded by a halo of chlorotic tissue, and cone bracts became brown. Pycnidia were observed in symptomatic tissue. The goal of this study was to identify and characterize the causal agent of symptoms in leaf and cone tissue. In symptomatic leaves, 15 of 19 isolates recovered had 96.4% internal transcribed spacer rDNA (ITSrDNA) homology with Diaporthe nomurai. Bayesian and maximum likelihood analyses were performed on a subset of isolates using ITSrDNA, histone H3, beta-tubulin, and elongation factor 1 alpha. Bootstrap and posterior probabilities supported a unique cluster of Diaporthe sp. 1-MI isolates most closely related to the Diaporthe arecae species complex, Diaporthe hongkongensis, and Diaporthe multigutullata. Diaporthe sp. 1-MI was pathogenic in detached leaf and whole plant assays. Single-spore isolates from pycnidia originating from cones and leaves shared 100% ITSrDNA homology with Diaporthe sp. 1-MI obtained from the lesion margins of leaves collected in 2018. The distribution of Diaporthe sp. 1-MI was widespread among 347 cones collected from 15 Michigan hop yards and accounted for >38% of fungi recovered from cones in three hop yards. Diaporthe sp. 1-MI causing halo and cone blight presents a new disease management challenge for Michigan hop growers.


Ascomycota , Ascomycota/genetics , Bayes Theorem , Michigan , Phylogeny , Plant Diseases
5.
Plant Dis ; 105(7): 1880-1889, 2021 Jul.
Article En | MEDLINE | ID: mdl-33074069

Hops have expanded as a niche crop in Michigan and other production areas in the eastern United States, but growers in these regions face annual downy mildew outbreaks incited by Pseudoperonospora humuli, exacerbated by frequent rainfall and high relative humidity. We evaluated the efficacy of foliar- and drench-applied fungicides against downy mildew and examined Michigan isolates for point mutations linked to carboxylic acid amide (CAA) resistance. Disease severity and density were assessed weekly in 2016 and 2017 in nontrellised research hop yards in Michigan. Area under the disease progress curve values for disease severity were significantly lower for plants treated with oxathiapiprolin, ametoctradin/dimethomorph, fluopicolide, cyazofamid, or mandipropamid (90.6 to 100% control) compared with those treated with fosetyl-Al (64.3 to 93.0% control) at both locations for both years. Drench treatments of fluopicolide and oxathiapiprolin/mefenoxam reduced disease density and severity at both locations but were only moderately effective (76.4 to 91.5% control). To assess CAA resistance, the cellulose synthase CesA3 gene was aligned using reference downy mildew species and primers designed to amplify the 1105 and 1109 amino acids. Point mutations conferring CAA resistance were not detected at these loci for sporangia from 42 symptomatic shoots collected from 11 commercial hop yards. These efficacy results for hop downy mildew are needed to guide disease recommendations in this expanding Michigan industry. The absence of resistant genotypes indicates that Michigan growers can continue to utilize CAA-containing commercial fungicides as part of an overall downy mildew management program.


Fungicides, Industrial , Amides/pharmacology , Carboxylic Acids/pharmacology , Fungicides, Industrial/pharmacology , Michigan , Plant Diseases , Point Mutation , United States
...