Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Viruses ; 12(9)2020 09 01.
Article En | MEDLINE | ID: mdl-32882998

Since its 2013 emergence in the Americas, Chikungunya virus (CHIKV) has posed a serious threat to public health. Early and accurate diagnosis of the disease, though currently lacking in clinics, is integral to enable timely care and epidemiological response. We developed a dual detection system: a CHIKV antigen E1/E2-based enzyme-linked immunosorbent assay (ELISA) and a lateral flow test using high-affinity anti-CHIKV antibodies. The ELISA was validated with 100 PCR-tested acute Chikungunya fever samples from Honduras. The assay had an overall sensitivity and specificity of 51% and 96.67%, respectively, with accuracy reaching 95.45% sensitivity and 92.03% specificity at a cycle threshold (Ct) cutoff of 22. As the Ct value decreased from 35 to 22, the ELISA sensitivity increased. We then developed and validated two lateral flow tests using independent antibody pairs. The sensitivity and specificity reached 100% for both lateral flow tests using 39 samples from Colombia and Honduras at Ct cutoffs of 20 and 27, respectively. For both lateral flow tests, sensitivity decreased as the Ct increased after 27. Because CHIKV E1/E2 are exposed in the virion surfaces in serum during the acute infection phase, these sensitive and specific assays demonstrate opportunities for early detection of this emerging human pathogen.


Antigens, Viral/analysis , Chikungunya Fever/diagnosis , Chikungunya virus/immunology , Chikungunya virus/isolation & purification , Enzyme-Linked Immunosorbent Assay , Immunoassay , Antibodies, Viral/immunology , Antigens, Viral/immunology , Chikungunya Fever/virology , Colombia , Honduras , Humans , Sensitivity and Specificity , Serologic Tests , Viral Envelope Proteins/immunology
2.
PLoS Negl Trop Dis ; 14(6): e0008203, 2020 06.
Article En | MEDLINE | ID: mdl-32579555

BACKGROUND: Dengue virus (DENV) infections pose one of the largest global barriers to human health. The four serotypes (DENV 1-4) present different symptoms and influence immune response to subsequent DENV infections, rendering surveillance, risk assessments, and disease control particularly challenging. Early diagnosis and appropriate clinical management is critical and can be achieved by detecting DENV nonstructural protein 1 (NS1) in serum during the acute phase. However, few NS1-based tests have been developed that are capable of differentiating DENV serotypes and none are currently commercially available. METHODOLOGY/PRINCIPLE FINDINGS: We developed an enzyme-linked immunosorbent assay (ELISA) to distinguish DENV-1-4 NS1 using serotype-specific pairs of monoclonal antibodies. A total of 1,046 antibodies were harvested from DENV-immunized mice and screened for antigen binding affinity. ELISA clinical performance was evaluated using 408 polymerase chain reaction-confirmed dengue samples obtained from patients in Brazil, Honduras, and India. The overall sensitivity of the test for pan-DENV was 79.66% (325/408), and the sensitivities for DENV-1-4 serotyping were 79.1% (38/48), 80.41% (78/97), 100% (45/45), and 79.6% (98/123), respectively. Specificity reached 94.07-100%. SIGNIFICANCE: Our study demonstrates a robust antibody screening strategy that enabled the development of a serotype NS1-based ELISA with maximized specific and sensitive antigen binding. This sensitive and specific assay also utilized the most expansive cohort to date, and of which about half are from Latin America, a geographic region severely underrepresented in previous similar studies. This ELISA test offers potential enhanced diagnostics during the acute phase of infection to help guide patient care and disease control. These results indicate that this ELISA is a promising aid in early DENV-1-4 diagnosis and surveillance in regions of endemicity in addition to offer convenient monitoring for future vaccine interventions.


Dengue Virus/classification , Dengue Virus/isolation & purification , Dengue/virology , Enzyme-Linked Immunosorbent Assay/methods , Serogroup , Viral Nonstructural Proteins/analysis , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Brazil , Cohort Studies , Honduras , Humans , India , Latin America , Mice, Inbred C57BL , Sensitivity and Specificity
3.
Sci Transl Med ; 9(409)2017 Sep 27.
Article En | MEDLINE | ID: mdl-28954927

The recent Zika virus (ZIKV) outbreak demonstrates that cost-effective clinical diagnostics are urgently needed to detect and distinguish viral infections to improve patient care. Unlike dengue virus (DENV), ZIKV infections during pregnancy correlate with severe birth defects, including microcephaly and neurological disorders. Because ZIKV and DENV are related flaviviruses, their homologous proteins and nucleic acids can cause cross-reactions and false-positive results in molecular, antigenic, and serologic diagnostics. We report the characterization of monoclonal antibody pairs that have been translated into rapid immunochromatography tests to specifically detect the viral nonstructural 1 (NS1) protein antigen and distinguish the four DENV serotypes (DENV1-4) and ZIKV without cross-reaction. To complement visual test analysis and remove user subjectivity in reading test results, we used image processing and data analysis for data capture and test result quantification. Using a 30-µl serum sample, the sensitivity and specificity values of the DENV1-4 tests and the pan-DENV test, which detects all four dengue serotypes, ranged from 0.76 to 1.00. Sensitivity/specificity for the ZIKV rapid test was 0.81/0.86, respectively, using a 150-µl serum input. Serum ZIKV NS1 protein concentrations were about 10-fold lower than corresponding DENV NS1 concentrations in infected patients; moreover, ZIKV NS1 protein was not detected in polymerase chain reaction-positive patient urine samples. Our rapid immunochromatography approach and reagents have immediate application in differential clinical diagnosis of acute ZIKV and DENV cases, and the platform can be applied toward developing rapid antigen diagnostics for emerging viruses.


Antigens, Viral/blood , Dengue Virus/immunology , Serogroup , Zika Virus/immunology , Amino Acid Sequence , Antibodies, Monoclonal/immunology , Antigens, Viral/isolation & purification , Chromatography, Affinity , Epitope Mapping , Humans , ROC Curve , Reproducibility of Results , Sensitivity and Specificity , Sequence Alignment
4.
Bioconjug Chem ; 25(8): 1444-52, 2014 Aug 20.
Article En | MEDLINE | ID: mdl-24960223

Heparin is a sulfated glycosaminoglycan that is widely used as an anticoagulant. It is typically extracted from porcine or bovine sources to yield a heterogeneous mixture that varies both in molecular weight and in degree of sulfation. This heterogeneity, coupled with concern for contamination, has led to widespread interest in developing safer alternatives. Described herein are sulfated bacteriophage Qß virus-like particles (VLPs) that elicit heparin-like anticoagulant activity. Sulfate groups were appended to the VLP by synthesis of single- and triple-sulfated ligands that also contained azide groups. Following conversion of VLP surface lysine groups to alkynes, the sulfated ligands were attached to the VLP via copper-catalyzed azide-alkyne cycloaddition (CuAAC). MALDI-MS analysis of the intermediate alkyne VLP indicated that the majority of the coat proteins contained 5-7 of the alkyne linkers; similar analysis of the intermediate alkyne particles conjugated to a fluorescein azide suggest that nearly the same number of attachment points (3-6) are modified via CuAAC. Analysis by SDS-PAGE with fluorescent staining indicated altered migration patterns for the various constructs: compared to the wild-type nanoparticle, the modified coat proteins appeared to migrate farther toward the positive pole in the gel, with coat proteins displaying the triple-sulfated ligand migrating significantly farther. Clotting activity analyzed by activated partial thrombin time (APTT) assay showed that the sulfated particles were able to perturb coagulation, with VLPs displaying the triple-sulfated ligand approximately as effective as heparin on a per mole basis; this activity could be partially reversed by protamine. ELISA experiments to assess the response of the complement system to the VLPs indicate that sulfating the particles may reduce complement activation.


Allolevivirus/chemistry , Anticoagulants/chemistry , Anticoagulants/pharmacology , Heparin/chemistry , Heparin/pharmacology , Nanoparticles/chemistry , Sulfates/chemistry , Alkynes/chemistry , Azides/chemistry , Blood Coagulation/drug effects , Capsid Proteins/chemistry , Complement Activation/drug effects , Copper/chemistry , Cycloaddition Reaction , Humans , Ligands , Models, Molecular , Partial Thromboplastin Time , Protein Conformation
5.
J Inorg Biochem ; 129: 30-4, 2013 Dec.
Article En | MEDLINE | ID: mdl-24013063

Electrochemical methods continue to present an attractive means for achieving in vitro biocatalysis with cytochromes P450; however understanding fully the nature of electrode-bound P450 remains elusive. Herein we report thermodynamic parameters using electrochemical analysis of full-length mammalian microsomal cytochrome P450 2B4 (CYP 2B4) in didodecyldimethylammonium bromide (DDAB) surfactant films. Electronic absorption spectra of CYP 2B4-DDAB films on silica slides reveal an absorption maximum at 418nm, characteristic of low-spin, six-coordinate, water-ligated Fe(III) heme in P450. The Fe(III/II) and Fe(II/I) redox couples (E1/2) of substrate-free CYP 2B4 measured by cyclic voltammetry are -0.23V and -1.02V (vs. SCE, or 14mV and -776mV vs. NHE) at 21°C. The standard heterogeneous rate constant for electron transfer from the electrode to the heme for the Fe(III/II) couple was estimated at 170s(-1). Experiments indicate that the system is capable of catalytic reduction of dioxygen, however substrate oxidation was not observed. From the variation of E1/2 with temperature (18-40°C), we have measured entropy and enthalpy changes that accompany heme reduction, -151Jmol(-1)K(-1) and -46kJmol(-1), respectfully. The corresponding entropy and enthalpy values are less for the six-coordinate low-spin, imidazole-ligated enzyme (-59Jmol(-1)K(-1) and -18kJmol(-1)), consistent with limited conformational changes upon reduction. These thermodynamic parameters are comparable to those measured for bacterial P450 from Bacillus megaterium (CYP BM3), confirming our prior reports that the surfactant environment exerts a strong influence on the redox properties of the heme.


Aryl Hydrocarbon Hydroxylases/chemistry , Heme/chemistry , Membranes, Artificial , Quaternary Ammonium Compounds/chemistry , Animals , Cytochrome P450 Family 2 , Electrochemical Techniques , Humans , Oxidation-Reduction , Silicon Dioxide/chemistry , Thermodynamics
...