Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 8(3)2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36538527

RESUMEN

Chronic exposure to high-fat diets (HFD) worsens intestinal disease pathology, but acute effects of HFD in tissue damage remain unclear. Here, we used short-term HFD feeding in a model of intestinal injury and found sustained damage with increased cecal dead neutrophil accumulation, along with dietary lipid accumulation. Neutrophil depletion rescued enhanced pathology. Macrophages from HFD-treated mice showed reduced capacity to engulf dead neutrophils. Macrophage clearance of dead neutrophils activates critical barrier repair and antiinflammatory pathways, including IL-10, which was lost after acute HFD feeding and intestinal injury. IL-10 overexpression restored intestinal repair after HFD feeding and intestinal injury. Macrophage exposure to lipids from the HFD prevented tethering and uptake of apoptotic cells and Il10 induction. Milk fat globule-EGF factor 8 (MFGE8) is a bridging molecule that facilitates macrophage uptake of dead cells. MFGE8 also facilitates lipid uptake, and we demonstrate that dietary lipids interfere with MFGE8-mediated macrophage apoptotic neutrophil uptake and subsequent Il10 production. Our findings demonstrate that HFD promotes intestinal pathology by interfering with macrophage clearance of dead neutrophils, leading to unresolved tissue damage.


Asunto(s)
Dieta Alta en Grasa , Interleucina-10 , Ratones , Animales , Intestinos , Macrófagos/fisiología , Lípidos
2.
Nature ; 594(7863): 413-417, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33981034

RESUMEN

Humans and their microbiota have coevolved a mutually beneficial relationship in which the human host provides a hospitable environment for the microorganisms and the microbiota provides many advantages for the host, including nutritional benefits and protection from pathogen infection1. Maintaining this relationship requires a careful immune balance to contain commensal microorganisms within the lumen while limiting inflammatory anti-commensal responses1,2. Antigen-specific recognition of intestinal microorganisms by T cells has previously been described3,4. Although the local environment shapes the differentiation of effector cells3-5 it is unclear how microbiota-specific T cells are educated in the thymus. Here we show that intestinal colonization in early life leads to the trafficking of microbial antigens from the intestine to the thymus by intestinal dendritic cells, which then induce the expansion of microbiota-specific T cells. Once in the periphery, microbiota-specific T cells have pathogenic potential or can protect against related pathogens. In this way, the developing microbiota shapes and expands the thymic and peripheral T cell repertoire, allowing for enhanced recognition of intestinal microorganisms and pathogens.


Asunto(s)
Células Dendríticas/inmunología , Microbioma Gastrointestinal/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Timo/citología , Timo/inmunología , Envejecimiento/inmunología , Animales , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , ADN Bacteriano/análisis , Células Dendríticas/metabolismo , Escherichia coli/inmunología , Femenino , Masculino , Ratones , Especificidad de Órganos , Salmonella/inmunología , Simbiosis/inmunología , Timo/metabolismo
3.
Front Immunol ; 10: 75, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30761142

RESUMEN

Epidemiological evidence finds cigarette smoking is a common risk factor for a number of diseases, not only in the lung but also in other tissues, such as the gastrointestinal tract. While it is well-documented that smoking directly drives lung inflammatory disease, how it promotes disease in peripheral tissues is incompletely understood. In this study, we utilized a mouse model of short-term smoke exposure and found increased Th17 cells and neutrophilia in the lung as well as in the circulation. Following intestinal inflammatory challenge, smoke exposed mice showed increased pathology which corresponds to enhanced intestinal Th17 cells, ILC3 and neutrophils within intestinal tissue. Using cellular depletion and genetic deficiencies, we define a cellular loop by which IL-17A and downstream neutrophils drive cigarette smoke-enhanced intestinal inflammation. Collectively, cigarette smoke induced local lung Th17 responses lead to increased systemic susceptibility to inflammatory insult through enhanced circulating neutrophils. These data demonstrate a cellular pathway by which inflammatory challenge in the lung can sensitize the intestine to enhanced pathological innate and adaptive immune responses.


Asunto(s)
Intestinos/efectos de los fármacos , Pulmón/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Humo/efectos adversos , Células Th17/efectos de los fármacos , Productos de Tabaco , Animales , Colitis/inducido químicamente , Colitis/inmunología , Colitis/patología , Citocinas/genética , Citocinas/inmunología , Femenino , Intestinos/inmunología , Intestinos/patología , Pulmón/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Células Th17/inmunología
4.
Gut Microbes ; 10(4): 540-546, 2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-33970784

RESUMEN

Intestinal damage driven by unrestricted immune responses against the intestinal microbiota can lead to the development of inflammatory diseases including inflammatory bowel disease. How such breakdown in tolerance occurs alongside the mechanisms to reinforce homeostasis with the microbiota are a focus of many studies. Our recent work demonstrates coordinated interactions between intact microbiota and CX3CR1 expressing intestinal antigen presenting cells (APCs) that limits T helper 1 cell responses and promotes differentiation of regulatory T cells (Treg) against intestinal antigens including pathogens, soluble proteins and the microbiota itself. We find a microbial attachment to intestinal epithelial cells is necessary to support these anti-inflammatory immune functions. In this addendum, we discuss how our findings enhance understanding of microbiota-directed homeostatic functions of the intestinal immune system and implications of modulating this interaction in ameliorating inflammatory disease.

5.
Immunity ; 49(3): 389-391, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30231979

RESUMEN

Intestinal homeostasis requires microbial recognition that results in appropriate responses to commensals and pathogens. In this issue of Immunity, Price et al. (2018) map the in vivo expression of five toll-like receptors (TLR) in intestinal epithelia, revealing distinct spatio-temporal expression patterns that shape responses to TLR ligands.


Asunto(s)
Mucosa Intestinal , Receptores Toll-Like , Inmunidad , Ligandos
6.
Immunity ; 49(1): 151-163.e5, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29980437

RESUMEN

The intestinal barrier is vulnerable to damage by microbiota-induced inflammation that is normally restrained through mechanisms promoting homeostasis. Such disruptions contribute to autoimmune and inflammatory diseases including inflammatory bowel disease. We identified a regulatory loop whereby, in the presence of the normal microbiota, intestinal antigen-presenting cells (APCs) expressing the chemokine receptor CX3CR1 reduced expansion of intestinal microbe-specific T helper 1 (Th1) cells and promoted generation of regulatory T cells responsive to food antigens and the microbiota itself. We identified that disruption of the microbiota resulted in CX3CR1+ APC-dependent inflammatory Th1 cell responses with increased pathology after pathogen infection. Colonization with microbes that can adhere to the epithelium was able to compensate for intestinal microbiota loss, indicating that although microbial interactions with the epithelium can be pathogenic, they can also activate homeostatic regulatory mechanisms. Our results identify a cellular mechanism by which the microbiota limits intestinal inflammation and promotes tissue homeostasis.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/metabolismo , Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Sistema Mononuclear Fagocítico/inmunología , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Animales , Presentación de Antígeno , Adhesión Bacteriana/inmunología , Modelos Animales de Enfermedad , Femenino , Homeostasis , Tolerancia Inmunológica , Inmunidad Mucosa , Inflamación/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Interleucina-10/inmunología , Interleucina-10/metabolismo , Mucosa Intestinal/microbiología , Masculino , Ratones , Células RAW 264.7
7.
Physiol Rep ; 4(18)2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27655794

RESUMEN

The mechanism by which macrophages and other immune cells accumulate in adipose tissue (AT) has been an area of intense investigation over the past decade. Several different chemokines and their cognate receptors have been studied for their role as chemoattractants in promoting recruitment of immune cells to AT However, it is also possible that chemoattractants known to promote clearance of immune cells from tissues to regional lymph nodes might be a critical component to overall AT immune homeostasis. In this study, we evaluated whether CCR7 influences AT macrophage (ATM) or T-cell (ATT) accumulation. CCR7-/- and littermate wild-type (WT) mice were placed on low-fat diet (LFD) or high-fat diet (HFD) for 16 weeks. CCR7 deficiency did not impact HFD-induced weight gain, hepatic steatosis, or glucose intolerance. Although lean CCR7-/- mice had an increased proportion of alternatively activated ATMs, there were no differences in ATM accumulation or polarization between HFD-fed CCR7-/- mice and their WT counterparts. However, CCR7 deficiency did lead to the preferential accumulation of CD8+ ATT cells, which was further exacerbated by HFD feeding. Finally, expression of inflammatory cytokines/chemokines, such as Tnf, Il6, Il1ß, Ccl2, and Ccl3, was equally elevated in AT by HFD feeding in CCR7-/- and WT mice, while Ifng and Il18 were elevated by HFD feeding in CCR7-/- but not in WT mice. Together, these data suggest that CCR7 plays a role in CD8+ATT cell egress, but does not influence ATM accumulation or the metabolic impact of diet-induced obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Linfocitos T CD8-positivos/metabolismo , Hígado Graso/metabolismo , Obesidad/metabolismo , Receptores CCR7/metabolismo , Tejido Adiposo/patología , Animales , Dieta Alta en Grasa/efectos adversos , Hígado Graso/etiología , Hígado Graso/patología , Interleucinas/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/patología , Receptores CCR7/genética , Factor de Necrosis Tumoral alfa/metabolismo
8.
Cell Host Microbe ; 18(4): 383-5, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26468738

RESUMEN

While acute infections cause short-term tissue damage, their long-term impact remains unknown. In a recent publication in Cell, Morais da Fonseca et al. (2015) demonstrate disruption of mesenteric lymph nodes and associated lymphatics after Yersinia pseudotuberculosis infection and clearance. This leads to chronic inflammation and an inability to initiate subsequent intestinal immune responses.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades del Sistema Inmune/microbiología , Enfermedades del Sistema Inmune/patología , Enfermedades Linfáticas/patología , Infecciones por Yersinia pseudotuberculosis/inmunología , Yersinia pseudotuberculosis/fisiología , Femenino , Humanos , Masculino
9.
Mol Metab ; 4(10): 665-77, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26779432

RESUMEN

OBJECTIVE: Macrophage accumulation in adipose tissue (AT) during obesity contributes to inflammation and insulin resistance. Recruitment of monocytes to obese AT has been the most studied mechanism explaining this accumulation. However, recent evidence suggests that recruitment-independent mechanisms may also regulate pro-inflammatory AT macrophage (ATM) numbers. The role of increased ATM survival during obesity has yet to be explored. RESULTS: We demonstrate that activation of apoptotic pathways is significantly reduced in ATMs from diet-induced and genetically obese mice. Concurrently, pro-survival Bcl-2 family member protein levels and localization to the mitochondria is elevated in ATMs from obese mice. This increased pro-survival signaling was associated with elevated activation of the transcription factor, NF-κB, and increased expression of its pro-survival target genes. Finally, an obesogenic milieu increased ATM viability only when NF-κB signaling pathways were functional. CONCLUSIONS: Our data demonstrate that obesity promotes survival of inflammatory ATMs, possibly through an NF-κB-regulated mechanism.

10.
Immunol Rev ; 262(1): 134-52, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25319332

RESUMEN

One decade has passed since seminal publications described macrophage infiltration into adipose tissue (AT) as a key contributor to inflammation and obesity-related insulin resistance. Currently, a PubMed search for 'adipose tissue inflammation' reveals over 3500 entries since these original reports. We now know that resident macrophages in lean AT are alternatively activated, M2-like, and play a role in AT homeostasis. In contrast, the macrophages in obese AT are dramatically increased in number and are predominantly classically activated, M1-like, and promote inflammation and insulin resistance. Mediators of AT macrophage (ATM) phenotype include adipokines and fatty acids secreted from adipocytes as well as cytokines secreted from other immune cells in AT. There are several mechanisms that could explain the large increase in ATMs in obesity. These include recruitment-dependent mechanisms such as adipocyte death, chemokine release, and lipolysis of fatty acids. Newer evidence also points to recruitment-independent mechanisms such as impaired apoptosis, increased proliferation, and decreased egress. Although less is known about the homeostatic function of M2-like resident ATMs, recent evidence suggests roles in AT expansion, thermoregulation, antigen presentation, and iron homeostasis. The field of immunometabolism has come a long way in the past decade, and many exciting new discoveries are bound to be made in the coming years that will expand our understanding of how AT stands at the junction of immune and metabolic co-regulation.


Asunto(s)
Tejido Adiposo/citología , Tejido Adiposo/fisiología , Macrófagos/fisiología , Tejido Adiposo/patología , Animales , Peso Corporal , Movimiento Celular , Citocinas/metabolismo , Homeostasis , Humanos , Mediadores de Inflamación/metabolismo , Enfermedades Metabólicas/inmunología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Especificidad de Órganos , Paniculitis/inmunología , Paniculitis/metabolismo , Paniculitis/patología , Fenotipo , Transducción de Señal
11.
Am J Physiol Endocrinol Metab ; 305(7): E897-906, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23941876

RESUMEN

Macrophage and T cell infiltration into metabolic tissues contributes to obesity-associated inflammation and insulin resistance (IR). C-C chemokine receptor 5 (CCR5), expressed on macrophages and T cells, plays a critical role in the recruitment and activation of proinflammatory M1 and TH1 immune cells to tissues and is elevated in adipose tissue (AT) and liver of obese humans and mice. Thus, we hypothesized that deficiency of CCR5 would protect against diet-induced inflammation and IR. CCR5-deficient (CCR5(-/-)) mice and C57BL/6 (WT) controls were fed 10% low-fat (LF) or 60% high-fat (HF) diets for 16 wk. HF feeding increased adiposity, blood glucose, and plasma insulin levels equally in both genotypes. Opposing our hypothesis, HF-fed CCR5(-/-) mice were significantly more glucose intolerant than WT mice. In AT, there was a significant reduction in the M1-associated gene CD11c, whereas M2 associated genes were not different between genotypes. In addition, HF feeding caused a twofold increase in CD4(+) T cells in the AT of CCR5(-/-) compared with WT mice. In liver and muscle, no differences in immune cell infiltration or inflammatory cytokine expression were detected. However, in AT and muscle, there was a mild reduction in insulin-induced phosphorylation of AKT and IRß in CCR5(-/-) compared with WT mice. These findings suggest that whereas CCR5 plays a minor role in regulating immune cell infiltration and inflammation in metabolic tissues, deficiency of CCR5 impairs systemic glucose tolerance as well as AT and muscle insulin signaling.


Asunto(s)
Intolerancia a la Glucosa/metabolismo , Glucosa/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Receptores CCR5/metabolismo , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Animales , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/inmunología , Inflamación/genética , Inflamación/inmunología , Insulina/metabolismo , Resistencia a la Insulina/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Ratones Obesos , Músculo Esquelético/inmunología , Receptores CCR5/genética
12.
Arterioscler Thromb Vasc Biol ; 32(7): 1687-95, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22556332

RESUMEN

OBJECTIVE: Elevated serum free fatty acid levels are associated with an increased risk of cardiovascular disease and type 2 diabetes mellitus. Macrophages are recruited to atherosclerotic plaques and metabolic tissues during obesity and accumulate lipids, including free fatty acids. We investigated the molecular consequences of intracellular saturated free fatty acid accumulation in macrophages. METHODS AND RESULTS: Previously, we demonstrated that cotreatment of mouse peritoneal macrophages (MPMs) with stearic acid and triacsin C (an inhibitor of long-chain acyl coenzyme A synthetases) results in intracellular free fatty acid accumulation and apoptosis. Here, we used Western blotting analysis, real-time reverse transcription polymerase chain reaction, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining to assess endoplasmic reticulum (ER) stress, inflammation, and apoptosis in MPMs. Intracellular stearic acid accumulation induces Toll-like receptor 4/2-independent inflammation that results in ER stress-mediated apoptosis of MPMs. Polarization of MPMs to a proinflammatory M1 phenotype increases their susceptibility to inflammation and ER stress, but not apoptosis, in response to cotreatment with stearic acid and triacsin C. CONCLUSIONS: Intracellular accumulation of stearic acid in MPMs activates inflammatory signaling, leading to ER stress-mediated apoptosis. M1 macrophages are more prone to stearic acid-induced inflammation and ER stress. These same pathways may be activated in macrophages residing in atherosclerotic plaques and metabolic tissues during conditions of obesity and hyperlipidemia.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico/fisiología , Inflamación/etiología , Macrófagos/metabolismo , Ácidos Esteáricos/metabolismo , Animales , Polaridad Celular , Ratones , Ratones Endogámicos C57BL , Receptor Toll-Like 2/fisiología , Receptor Toll-Like 4/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA