Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Eye Res ; 244: 109941, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782177

RESUMEN

Refractive errors remain a global health concern, as a large proportion of the world's population is myopic. Current ablative approaches are costly, not without risks, and not all patients are candidates for these procedures. Electromechanical reshaping (EMR) has been explored as a viable cost-effective modality to directly shape tissues, including cartilage. In this study, stromal collagen structure and fibril orientation was examined before and after EMR with second-harmonic generation microscopy (SHG), a nonlinear multiphoton imaging method that has previously been used to study native corneal collagen with high spatial resolution. EMR, using a milled metal contact lens and potentiostat, was performed on the corneas of five extracted rabbit globes. SHG was performed using a confocal microscopy system and all images underwent collagen fibril orientation analysis. The collagen SHG signal in controls is uniform and is similarly seen in samples treated with pulsed potential, while continuous EMR specimens have reduced, nonhomogeneous signal. Collagen fibril orientation in native tissue demonstrates a broad distribution with suggestion of another peak evolving, while with EMR treated eyes a bimodal characteristic becomes readily evident. Pulsed EMR may be a means to correct refractive errors, as when comparing its SHG signal to negative control, preservation of collagen structures with little to no damage is observed. From collagen fiber orientation analysis, it can be inferred that simple DC application alters the structure of collagen. Future studies will involve histological assessment of these layers and multi-modal imaging analysis of dosimetry.


Asunto(s)
Colágeno , Microscopía Confocal , Microscopía de Generación del Segundo Armónico , Animales , Conejos , Microscopía de Generación del Segundo Armónico/métodos , Colágeno/metabolismo , Sustancia Propia/metabolismo , Córnea
2.
Plast Reconstr Surg ; 153(2): 334e-347e, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163479

RESUMEN

BACKGROUND: Current minimally invasive fat reduction modalities use equipment that can cost thousands of U.S. dollars. Electrochemical lipolysis (ECLL), using low-cost battery and electrodes (approximately $10), creates acid/base within fat (width, approximately 3 mm), damaging adipocytes. Longitudinal effects of ECLL have not been studied. In this pilot study, the authors hypothesize that in vivo ECLL induces fat necrosis, decreases adipocyte number/viability, and forms lipid droplets. METHODS: Two female Yorkshire pigs (50 to 60 kg) received ECLL. In pig 1, 10 sites received ECLL, and 10 sites were untreated. In pig 2, 12 sites received ECLL and 12 sites were untreated. For ECLL, two electrodes were inserted into dorsal subcutaneous fat and direct current was applied for 5 minutes. Adverse effects of excessive pain, bleeding, infection, and agitation were monitored. Histology, live-dead (calcein, Hoechst, ethidium homodimer-1), and morphology (Bodipy and Hoechst) assays were performed on day 0 and postprocedure days 1, 2, 7, 14 (pig 1 and pig 2), and 28 (pig 2). Average particle area, fluorescence signal areas, and adipocytes and lipid droplet numbers were compared. RESULTS: No adverse effects occurred. Live-dead assays showed adipocyte death on the anode on days 0 to 7 and the cathode on days 1 to 2 (not significant). Bodipy showed significant adipocyte loss at all sites ( P < 0.001) and lipid droplet formation at the cathode site on day 2 ( P = 0.0046). Histology revealed fat necrosis with significant increases in average particle area at the anode and cathode sites by day 14 (+277.3% change compared with untreated, P < 0.0001; +143.4%, P < 0.0001) and day 28 (+498.6%, P < 0.0001; +354.5%, P < 0.0001). CONCLUSIONS: In vivo ECLL induces fat necrosis in pigs. Further studies are needed to evaluate volumetric fat reduction. CLINICAL RELEVANCE STATEMENT: In vivo ECLL induces adipocyte death and fat necrosis. ECLL has the potential to be utilized in body fat contouring.


Asunto(s)
Compuestos de Boro , Necrosis Grasa , Lipólisis , Femenino , Animales , Porcinos , Proyectos Piloto , Adipocitos
3.
ACS Biomater Sci Eng ; 9(2): 595-600, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36634100

RESUMEN

The corneal stroma consists of orthogonally stacked collagen-fibril lamellae that determine the shape of the cornea and provide most of the refractive power of the eye. We have applied electromechanical reshaping (EMR), an electrochemical platform for remodeling cartilage and other semirigid tissues, to change the curvature of the cornea as a potential procedure for nonsurgical vision correction. EMR relies on short electrochemical pulses to electrolyze water, with subsequent diffusion of protons into the extracellular matrix of collagenous tissues; protonation of immobilized anions within this matrix disrupts the ionic-bonding network, leaving the tissue transiently responsive to mechanical remodeling. Re-equilibration to physiological pH restores the ionic matrix, resulting in persistent shape change of the tissue. Using ex vivo rabbit eyes, we demonstrate here the controlled change of corneal curvature over a wide range of refractive powers with no loss of optical transparency. Optical coherence tomography (OCT), combined with second-harmonic generation (SHG) and confocal microscopy, establish that EMR enables extremely fine control of corneal contouring while maintaining the underlying macromolecular collagen structure and stromal cellular viability, positioning electrochemical vision therapy as a potentially simple and ultralow-cost modality for correcting routine refractive errors.


Asunto(s)
Córnea , Sustancia Propia , Animales , Conejos , Sustancia Propia/cirugía , Colágeno , Matriz Extracelular , Tomografía de Coherencia Óptica
4.
Lasers Surg Med ; 55(1): 135-145, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36511512

RESUMEN

OBJECTIVES: Traditional fat contouring is now regularly performed using numerous office- based less invasive techniques. However, some limitations of these minimally invasive techniques include high cost or limited selectivity with performing localized contouring and reduction of fat. These shortcomings may potentially be addressed by electrochemical lipolysis (ECLL), a novel approach that involves the insertion of electrodes into tissue followed by application of a direct current (DC) electrical potential. This results in the hydrolysis of tissue water creating active species that lead to fat necrosis and apoptosis. ECLL can be accomplished using a simple voltage-driven system (V-ECLL) or a potential-driven feedback cell (P-ECLL) both leading to water electrolysis and the creation of acid and base in situ. The aim of this study is to determine the long-lasting effects of targeted ECLL in a Yucatan pig model. METHODS: A 5-year-old Yucatan pig was treated with both V-ECLL and P-ECLL in the subcutaneous fat layer using 80:20 platinum:iridium needle electrodes along an 8 cm length. Dosimetry parameters included 5 V V-ECLL for 5, 10, and 20 minutes, and -1.5 V P-ECLL, -2.5 V P-ECLL, -3.5 V P-ECLL for 5 minutes. The pig was assessed for changes in fat reduction over 3 months with digital photography and ultrasound. After euthanasia, tissue sections were harvested and gross pathology and histology were examined. RESULTS: V-ECLL and P-ECLL treatments led to visible fat reduction (12.1%-27.7% and 9.4%-40.8%, respectively) and contour changes across several parameters. An increased reduction of the superficial fat layer occurred with increased dosimetry parameters with an average charge transfer of 12.5, 24.3, and 47.5 C transferred for 5 V V-ECLL for 5, 10, and 20 minutes, respectively, and 2.0, 11.5, and 24.0 C for -1.5 V P-ECLL, -2.5 V P-ECLL, -3.5 V P-ECLL for 5 minutes, respectively. These dose-dependent changes were also evidenced by digital photography, gross pathology, ultrasound imaging, and histology. CONCLUSIONS: ECLL results in selective damage and long-lasting changes to the adipose layer in vivo. These changes are dose-dependent, thus allowing for more precise contouring of target areas. P-ECLL has greater efficiency and control of total charge transfer compared to V-ECLL, suggesting that a low-voltage potentiostat treatment can result in fat apoptosis equivalent to a high-voltage DC system.


Asunto(s)
Lipectomía , Lipólisis , Animales , Porcinos , Prueba de Estudio Conceptual , Grasa Subcutánea/diagnóstico por imagen , Lipectomía/métodos , Ultrasonografía
5.
Inorg Chem ; 61(32): 12625-12634, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35920800

RESUMEN

We report the isolation and characterization of a series of three cobalt(II) bis(phosphine) complexes with varying numbers of coordinated solvent ligands in the axial position. X-ray quality crystals of [Co(dppv)2][BF4]2 (1), [Co(dppv)2(NCCH3)][BPh4]2 (2), and [Co(dppv)2(NCCH3)2][BF4]2 (3) (dppv = cis-1,2-bis(diphenylphosphino)ethylene) were grown under slightly different conditions, and their structures were compared. This analysis revealed multiple crystallization motifs for divalent cobalt(II) complexes with the same set of phosphine ligands. Notably, the 4-coordinate complex 1 is a rare example of a square-planar cobalt(II) complex, the first crystallographically characterized square-planar Co(II) complex containing only neutral, bidentate ligands. Characterization of the different axial geometries via EPR and UV-visible spectroscopies showed that there is a very shallow energy landscape for axial ligation. Ligand field angular overlap model calculations support this conclusion, and we provide a strategy for tuning other ligands to be axially labile on a phosphine scaffold. This methodology is proposed to be used for designing cobalt phosphine catalysts for a variety of oxidation and reduction reactions.


Asunto(s)
Cobalto , Cobalto/química , Cristalografía por Rayos X , Ligandos , Oxidación-Reducción , Fosfinas
6.
Transl Vis Sci Technol ; 11(1): 32, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-35061010

RESUMEN

Purpose: Corneal chemical injuries (CCI) obscure vision by opacifying the cornea; however, current treatments may not fully restore clarity. Here, we investigated potential-driven electrochemical treatment (P-ECT) to restore clarity after alkaline-based CCI in ex vivo rabbit corneas and examined collagen fiber orientation changes using second harmonic generation (SHG). Methods: NaOH was applied to the corneas of intact New Zealand white rabbit globes. P-ECT was performed on the opacified cornea while optical coherence tomography (OCT) imaging (∼35 frames per second) was simultaneously performed. SHG imaging evaluated collagen fiber structure before NaOH application and after P-ECT. Irrigation with water served as a control. Results: P-ECT restored local optical clarity after NaOH exposure. OCT imaging shows both progression of NaOH injury and the restoration of clarity in real time. Analysis of SHG z-stack images show that collagen fibril orientation is similar between control, NaOH-damaged, and post-P-ECT corneas. NaOH-injured corneas flushed with water (15 minutes) show no restoration of clarity. Conclusions: P-ECT may be a means to correct alkaline CCI. Collagen fibril orientation does not change after NaOH exposure or P-ECT, suggesting that no irreversible matrix level fiber changes occur. Further studies are required to determine the mechanism for corneal clearing and to ascertain the optimal electrical dosimetry parameters and electrode designs. Translational Relevance: Our findings suggest that P-ECT is a potentially effective, low-cost treatment for alkaline CCI.


Asunto(s)
Lesiones de la Cornea , Animales , Córnea/diagnóstico por imagen , Lesiones de la Cornea/terapia , Conejos , Piel
7.
Lasers Surg Med ; 54(1): 157-169, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34412154

RESUMEN

OBJECTIVES: Minimally invasive fat sculpting techniques are becoming more widespread with the development of office-based devices and therapies. Electrochemical lipolysis (ECLL) is a needle-based technology that uses direct current (DC) to electrolyze tissue water creating acid and base in situ. In turn, fat is saponified and adipocyte cell membrane lysis occurs. The electrolysis of water can be accomplished using a simple open-loop circuit (V-ECLL) or by incorporating a feedback control circuit using a potentiostat (P-ECLL). A potentiostat utilizes an operational amplifier with negative feedback to allow users to precisely control voltage at specific electrodes. To date, the variation between the two approaches has not been studied. The aim of this study was to assess current and charge transfer variation and lipolytic effect created by the two approaches in an in vivo porcine model. METHODS: Charge transfer measurements from ex vivo V-ECLL and P-ECLL treated porcine skin and fat were recorded at -1 V P-ECLL, -2 V P-ECLL, -3 V P-ECLL, and -5 V V-ECLL each for 5 min to guide dosimetry parameters for in vivo studies. In follow-up in vivo studies, a sedated female Yorkshire pig was treated with both V-ECLL and P-ECLL across the dorsal surface over a range of dosimetry parameters, including -1.5 V P-ECLL, -2.5 V P-ECLL, -3.5 V P-ECLL, and 5 V V-ECLL each treated for 5 min. Serial biopsies were performed at baseline before treatment, 1, 2, 7, 14, and 28 days after treatment. Tissue was examined using fluorescence microscopy and histology to compare the effects of the two ECLL approaches. RESULTS: Both V-ECLL and P-ECLL treatments induced in-vivo fat necrosis evident by adipocyte membrane lysis, adipocyte denuclearization, and an acute inflammatory response across a 28-day longitudinal study. However, -1.5 V P-ECLL produced a smaller spatial necrotic effect compared to 5 V V-ECLL. In addition, 5 V V-ECLL produced a comparable necrotic effect to that of -2.5 V and -3.5 V P-ECLL. CONCLUSIONS: V-ECLL and P-ECLL at the aforementioned dosimetry parameters both achieved fat necrosis by adipocyte membrane lysis and denuclearization. The -2.5 V and -3.5 V P-ECLL treatments created spatially similar fat necrotic effects when compared to the 5 V V-ECLL treatment. Quantitatively, total charge transfer between dosimetry parameters suggests that -2.5 V P-ECLL and 5 V V-ECLL produce comparable electrochemical reactions. Such findings suggest that a low-voltage closed-loop potentiostat-based system is capable of inducing fat necrosis to a similar extent compared to that of a higher voltage direct current system.


Asunto(s)
Adipocitos , Lipólisis , Animales , Estudios de Factibilidad , Retroalimentación , Femenino , Estudios Longitudinales , Porcinos
8.
Inorg Chem ; 60(23): 17445-17449, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34813328

RESUMEN

Here we report electrochemical, spectroscopic, and crystallographic characterization of a redox series of cobalt complexes in five sequential oxidation states. A simple bidentate phosphine ligand, cis-1,2-bis(diphenylphosphino)ethylene (dppv), allows for isolation of the 3+, 2+, 1+, 0, and 1- oxidation states of cobalt─the only known example of transition-metal complexes with redox-innocent ligands in five oxidation states. Electrochemistry of [Co(dppv)2]2+ reveals three reversible reductions and one reversible oxidation. Complexes in each oxidation state are characterized using single-crystal X-ray diffraction. The coordination number and geometry of the complex changes as a function of the oxidation state: including acetonitrile ligands, the Co3+ complex is pseudo-octahedral, the Co2+ complex is square-pyramidal, the Co+ complex is pseudo-square-planar, and the Co0 and Co- complexes approach pseudo-tetrahedral, illustrating structures predicted by crystal-field theory of inorganic transition-metal complexes.

9.
J Am Chem Soc ; 143(30): 11631-11640, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34309382

RESUMEN

Over the past 25 years, collective evidence has demonstrated that the DNA base-pair stack serves as a medium for charge transport chemistry in solution and on DNA-modified gold surfaces. Since this charge transport depends sensitively upon the integrity of the DNA base pair stack, perturbations in base stacking, as may occur with DNA base mismatches, lesions, and protein binding, interrupt DNA charge transport (DNA CT). This sensitivity has led to the development of powerful DNA electrochemical sensors. Given the utility of DNA electrochemistry for sensing and in response to recent literature, we describe critical protocols and characterizations necessary for performing DNA-mediated electrochemistry. We demonstrate DNA electrochemistry with a fully AT DNA sequence using a thiolated preformed DNA duplex and distinguish this DNA-mediated chemistry from that of electrochemistry of largely single-stranded DNA adsorbed to the surface. We also demonstrate the dependence of DNA CT on a fully stacked duplex. An increase in the percentage of mismatches within the DNA monolayer leads to a linear decrease in current flow for a DNA-bound intercalator, where the reaction is DNA-mediated; in contrast, for ruthenium hexammine, which binds electrostatically to DNA and the redox chemistry is not DNA-mediated, there is no effect on current flow with mismatches. We find that, with DNA as a well hybridized duplex, upon assembly, a DNA-mediated pathway facilitates the electron transfer between a well coupled redox probe and the gold surface. Overall, this report highlights critical points to be emphasized when utilizing DNA electrochemistry and offers explanations and controls for analyzing confounding results.


Asunto(s)
ADN/química , Técnicas Electroquímicas , Oro/química , Emparejamiento Base , Transporte de Electrón , Oxidación-Reducción
10.
Sci Rep ; 10(1): 20745, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247200

RESUMEN

Body contouring achieved via subcutaneous adipose tissue reduction has notably advanced over the past century, from suction assisted lipectomy to techniques with reduced degrees of invasiveness including laser, radiofrequency, high frequency focused ultrasound, cryolipolysis, and drug-based injection approaches. These costly techniques have focused on damaging adipocyte cell membranes, hydrolyzing triglycerides (TGs), or inducing apoptosis. Here, we present a simple, low-cost technique, termed electrochemical lipolysis (ECLL). During ECLL, saline is injected into the subcutaneous adipose tissue, followed by insertion of needle electrodes and application of an electrical potential. Electrolysis of saline creates localized pH gradients that drive adipocyte death and saponification of TGs. Using pH mapping, various optical imaging techniques, and biochemical assays, we demonstrate the ability of ECLL to induce acid and base injury, cell death, and the saponification of triglycerides in ex vivo porcine adipose tissue. We define ECLL's potential role as a minimally-invasive, ultra-low-cost technology for reducing and contouring adipose tissue, and present ECLL as a potential new application of an emerging electrochemical redox based treatment modality.


Asunto(s)
Tejido Adiposo/patología , Contorneado Corporal/métodos , Técnicas Electroquímicas/métodos , Lipólisis , Triglicéridos/metabolismo , Tejido Adiposo/metabolismo , Animales , Apoptosis , Concentración de Iones de Hidrógeno , Porcinos
11.
Chem Commun (Camb) ; 56(26): 3729-3732, 2020 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-32129331

RESUMEN

The metal hydration state within a designed coiled coil can be progressively tuned across the full integer range (3 → 0 aqua ligands), by careful choice of a second sphere terminal residue, including the lesser used Trp. Potential implications include a four-fold change in MRI relaxivity when applied to lanthanide coiled coils.


Asunto(s)
Complejos de Coordinación/química , Gadolinio/química , Péptidos/química , Secuencia de Aminoácidos , Sitios de Unión , Unión Proteica
12.
J Dermatol Sci ; 97(3): 179-186, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32169274

RESUMEN

BACKGROUND: Minimally-invasive methods to treat scars address a common pathway of altering collagen structure, leading to collagen remodeling. OBJECTIVE: In this study, we employed in situ redox chemistry to create focal pH gradients in skin, altering dermal collagen, in a process we refer to as electrochemical therapy (ECT). The effects of ECT to induce biochemical and structural changes in ex vivo porcine skin were examined. METHODS: During ECT, two platinum electrodes were inserted into fresh porcine skin, and following saline injection, an electrical potential was applied. pH mapping, high frequency ultrasonography, and two photon excitation microscopy and second harmonic generation (SHG) microscopy were used to evaluate treatment effects. Findings were correlated with histology. RESULTS: Following ECT, pH mapping depicted acid and base production at anode and cathode sites respectively, with increasing voltage and application time. Gas formation during ECT was observed with ultrasonography. Anode sites showed significant loss of SHG signal, while cathode sites showed disorganized collagen structure with fewer fibrils emitting an attainable signal. Histologically, collagen denaturation at both sites was confirmed. CONCLUSION: We demonstrated the production of in situ acid and base in skin occurring via ECT. The effects chemically and precisely alter collagen structure through denaturation, giving insight on the potential of ECT as a simple, low-cost, and minimally-invasive means to remodel skin and treat scars.


Asunto(s)
Cicatriz/terapia , Colágeno/química , Terapia por Estimulación Eléctrica/métodos , Piel/química , Animales , Fenómenos Biofísicos , Cicatriz/patología , Terapia por Estimulación Eléctrica/instrumentación , Electrodos , Humanos , Concentración de Iones de Hidrógeno , Microscopía de Fluorescencia por Excitación Multifotónica , Modelos Animales , Piel/diagnóstico por imagen , Piel/patología , Porcinos , Ultrasonografía
13.
Urolithiasis ; 48(3): 201-208, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31773216

RESUMEN

Although most kidney stones are found in the calyx, they are usually initiated upstream in the nephron by precipitation there of certain incipient mineral phases. The risk of kidney stone formation can thus be indicated by changes in the degree of saturation of these minerals in the nephron fluid. To this end, relevant concentration profiles in the fluid along the nephron have been calculated by starting with specified urine compositions and imposing constraints from the corresponding, much less variable, blood compositions. A model for supersaturation within ten sections of both long and short nephrons has accordingly been developed based on this 'reverse engineering' of the necessary substance concentrations coupled with chemical speciation distributions calculated by our Joint Expert Speciation System (JESS). This allows the likelihood of precipitation to be assessed based on Ostwald's 'Rule of Stages'. Differences between normal and stone-former profiles have been used to identify sections in the nephron where conditions seem most likely to induce heterogeneous nucleation.


Asunto(s)
Cálculos Renales/diagnóstico , Cálculos Renales/metabolismo , Nefronas , Líquidos Corporales/química , Simulación por Computador , Humanos , Cálculos Renales/sangre , Cálculos Renales/orina , Modelos Biológicos , Medición de Riesgo
14.
Protein Sci ; 26(10): 1984-1993, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28710816

RESUMEN

Azotobacter vinelandii flavodoxin II serves as a physiological reductant of nitrogenase, the enzyme system mediating biological nitrogen fixation. Wildtype A. vinelandii flavodoxin II was electrochemically and crystallographically characterized to better understand the molecular basis for this functional role. The redox properties were monitored on surfactant-modified basal plane graphite electrodes, with two distinct redox couples measured by cyclic voltammetry corresponding to reduction potentials of -483 ± 1 mV and -187 ± 9 mV (vs. NHE) in 50 mM potassium phosphate, 150 mM NaCl, pH 7.5. These redox potentials were assigned as the semiquinone/hydroquinone couple and the quinone/semiquinone couple, respectively. This study constitutes one of the first applications of surfactant-modified basal plane graphite electrodes to characterize the redox properties of a flavodoxin, thus providing a novel electrochemical method to study this class of protein. The X-ray crystal structure of the flavodoxin purified from A. vinelandii was solved at 1.17 Å resolution. With this structure, the native nitrogenase electron transfer proteins have all been structurally characterized. Docking studies indicate that a common binding site surrounding the Fe-protein [4Fe:4S] cluster mediates complex formation with the redox partners Mo-Fe protein, ferredoxin I, and flavodoxin II. This model supports a mechanistic hypothesis that electron transfer reactions between the Fe-protein and its redox partners are mutually exclusive.


Asunto(s)
Azotobacter vinelandii/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Flavodoxina/química , Flavodoxina/metabolismo , Azotobacter vinelandii/metabolismo , Azotobacter vinelandii/fisiología , Cristalografía por Rayos X , Electroquímica , Concentración de Iones de Hidrógeno , Hierro/química , Hierro/metabolismo , Modelos Moleculares , Nitrogenasa , Conformación Proteica
15.
J Am Chem Soc ; 138(48): 15551-15554, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27934017

RESUMEN

Recent work suggests that electrons can travel through DNA and other chiral molecules in a spin-selective manner, but little is known about the origin of this spin selectivity. Here we describe experiments on magnetized DNA-modified electrodes to explore spin-selective electron transport through hydrated duplex DNA. Our results show that the two spins migrate through duplex DNA with a different yield and that spin selectivity requires charge transport through the DNA duplex. Significantly, shifting the same duplex DNA between right-handed B- and left-handed Z-forms leads to a diode-like switch in spin selectivity; which spin moves more efficiently through the duplex depends upon the DNA helicity. With DNA, the supramolecular organization of chiral moieties, rather than the chirality of the individual monomers, determines the selectivity in spin, and thus a conformational change can switch the spin selectivity.


Asunto(s)
ADN/química , Técnicas Electroquímicas , Electrodos , Transporte de Electrón , Azul de Metileno/química , Oxazinas/química , Oxidación-Reducción , Plata/química , Compuestos de Plata/química
16.
J Am Chem Soc ; 138(17): 5699-705, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27068652

RESUMEN

A d(8)-d(8) complex [Pt2(µ-P2O5(BF2)4](4-) (abbreviated Pt(pop-BF2)(4-)) undergoes two 1e(-) reductions at E1/2 = -1.68 and Ep = -2.46 V (vs Fc(+)/Fc) producing reduced Pt(pop-BF2)(5-) and superreduced Pt(pop-BF2)(6-) species, respectively. The EPR spectrum of Pt(pop-BF2)(5-) and UV-vis spectra of both the reduced and the superreduced complexes, together with TD-DFT calculations, reveal successive filling of the 6pσ orbital accompanied by gradual strengthening of Pt-Pt bonding interactions and, because of 6pσ delocalization, of Pt-P bonds in the course of the two reductions. Mayer-Millikan Pt-Pt bond orders of 0.173, 0.268, and 0.340 were calculated for the parent, reduced, and superreduced complexes, respectively. The second (5-/6-) reduction is accompanied by a structural distortion that is experimentally manifested by electrochemical irreversibility. Both reduction steps proceed without changing either d(8) Pt electronic configuration, making the superreduced Pt(pop-BF2)(6-) a very rare 6p(2) σ-bonded binuclear complex. However, the Pt-Pt σ bonding interaction is limited by the relatively long bridging-ligand-imposed Pt-Pt distance accompanied by repulsive electronic congestion. Pt(pop-BF2)(4-) is predicted to be a very strong photooxidant (potentials of +1.57 and +0.86 V are estimated for the singlet and triplet dσ*pσ excited states, respectively).

17.
Angew Chem Int Ed Engl ; 55(18): 5497-500, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27059655

RESUMEN

An alternative to conventional "cut-and-sew" cartilage surgery, electromechanical reshaping (EMR) is a molecular-based modality in which an array of needle electrodes is inserted into cartilage held under mechanical deformation by a jig. Brief (ca. 2 min) application of an electrochemical potential at the water-oxidation limit results in permanent reshaping of the specimen. Highly sulfated glycosaminoglycans within the cartilage matrix provide structural rigidity to the tissue through extensive ionic-bonding networks; this matrix is highly permselective for cations. Our studies indicate that EMR results from electrochemical generation of localized, low-pH gradients within the tissue: fixed negative charges in the proteoglycan matrix are protonated, resulting in chemically induced stress relaxation of the tissue. Re-equilibration to physiological pH restores the fixed negative charges, and yields remodeled cartilage that retains a new shape approximated by the geometry of the reshaping jig.


Asunto(s)
Cartílago/química , Técnicas Electroquímicas , Técnicas Electroquímicas/instrumentación , Electrodos , Concentración de Iones de Hidrógeno
18.
Biotechniques ; 59(6): 329-30, 332, 334, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26651512

RESUMEN

Copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry is widely used and has demonstrated particular utility for bio-orthogonal conjugation reactions. Here we describe a one-pot, heterogeneous bioconjugation and purification method for selectively activated CuAAC. A Cu(II) precursor, with either the neutral ligand 1,10-phenanthroline-5,6-dione or the anionic ligand 4,7-diphenyl-1,10-phenanthroline-disulfonic acid, is converted to the active Cu(I) species within an ion-exchange matrix using zinc amalgam as the reducing agent. The Cu(I) complexes are then layered on top of a size-exclusion matrix within a commercial microcentrifuge spin column; passing a mixture of an ethynyl-labeled biomolecule and an azide-bearing ligand through the column results in clean and efficient coupling. The methodology is demonstrated by glycosylating a DNA oligonucleotide as well as by labeling a membrane-penetrating peptide (octa-arginine) with a coumarin dye.


Asunto(s)
Alquinos/química , Azidas/química , Química Clic/métodos , Colorantes/química , Catálisis , Cromatografía Líquida de Alta Presión , Cobre , ADN/química , Glicosilación , Espectrometría de Masas
19.
Langmuir ; 31(23): 6554-62, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26042916

RESUMEN

We have developed a thin layer, multiplexed biosensing platform that features two working-electrode arrays for detecting small molecules, nucleic acid sequences, and DNA-binding proteins. DNA duplexes are patterned onto the primary electrode array, while a secondary electrode array is used both to initiate DNA monolayer formation and for electrochemical readout via DNA-mediated charge transport (DNA CT) chemistry. Electrochemical reduction of Cu(phendione)2(2+) (phendione is 1,10-phenanthroline-5,6-dione) at the secondary electrodes induces covalent attachment via click chemistry of ethynyl-labeled DNA probe duplexes onto the primary electrodes that have been treated with azide-terminated alkylthiols. Electrochemical impedance spectroscopy and cyclic voltammetry confirm that catalyst activation at the secondary electrode is essential to maintain the integrity of the DNA monolayer. Electrochemical readout of DNA CT processes that occur at the primary electrode is accomplished also at the secondary electrode. The two-electrode system enables the platform to function as a collector-generator using either ferrocyanide or ferricyanide as mediators with methylene blue and DNA charge transport. Electrochemical measurements at the secondary electrode eliminate the need for large background corrections. The resulting sensitivity of this platform enables the reliable and simultaneous detection of femtomoles of the transcription factors TATA-binding protein and CopG on a single multiplexed device.


Asunto(s)
Técnicas Biosensibles/instrumentación , Sondas de ADN/química , Proteínas de Unión al ADN/análisis , ADN/química , Azidas/química , Catálisis , Química Clic , Técnicas Electroquímicas , Electrodos , Fenantrolinas/química
20.
Polyhedron ; 84: 150-159, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25435647

RESUMEN

Electrocatalysis is often thought of solely in the inorganic realm, most often applied to energy conversion in fuel cells. However, the ever-growing field of bioelectrocatalysis has made great strides in advancing technology for both biofuel cells as well as biological detection platforms. Within the context of bioelectrocatalytic detection systems, DNA-based platforms are especially prevalent. One subset of these platforms, the one we have developed, takes advantage of the inherent charge transport properties of DNA. Electrocatalysis coupled with DNA-mediated charge transport has enabled specific and sensitive detection of lesions, mismatches and DNA-binding proteins. Even greater signal amplification from these platforms is now being achieved through the incorporation of a secondary electrode to the platform both for patterning DNA arrays and for detection. Here, we describe the evolution of this new DNA sensor technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA