Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 92(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29321311

RESUMEN

In the process of generating herpes simplex virus 1 (HSV-1) mutations in the viral regulatory gene encoding infected cell protein 0 (ICP0), we isolated a viral mutant, termed KOS-NA, that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) of mice, defective in establishing a latent infection, and reactivated poorly from explanted TG. To identify the secondary mutation(s) responsible for the impaired phenotypes of this mutant, we sequenced the KOS-NA genome and noted that it contained two nonsynonymous mutations in UL39, which encodes the large subunit of ribonucleotide reductase, ICP6. These mutations resulted in lysine-to-proline (residue 393) and arginine-to-histidine (residue 950) substitutions in ICP6. To determine whether alteration of these amino acids was responsible for the KOS-NA phenotypes in vivo, we recombined the wild-type UL39 gene into the KOS-NA genome and rescued its acute replication phenotypes in mice. To further establish the role of UL39 in KOS-NA's decreased pathogenicity, the UL39 mutations were recombined into HSV-1 (generating UL39mut), and this mutant virus showed reduced ocular and TG replication in mice comparable to that of KOS-NA. Interestingly, ICP6 protein levels were reduced in KOS-NA-infected cells relative to the wild-type protein. Moreover, we observed that KOS-NA does not counteract caspase 8-induced apoptosis, unlike wild-type strain KOS. Based on alignment studies with other HSV-1 ICP6 homologs, our data suggest that amino acid 950 of ICP6 likely plays an important role in ICP6 accumulation and inhibition of apoptosis, consequently impairing HSV-1 pathogenesis in a mouse model of HSV-1 infection.IMPORTANCE HSV-1 is a major human pathogen that infects ∼80% of the human population and can be life threatening to infected neonates or immunocompromised individuals. Effective therapies for treatment of recurrent HSV-1 infections are limited, which emphasizes a critical need to understand in greater detail the events that modulate HSV-1 replication and pathogenesis. In the current study, we identified a neuroattenuated HSV-1 mutant (i.e., KOS-NA) that contains novel mutations in the UL39 gene, which codes for the large subunit of ribonucleotide reductase (also known as ICP6). This mutant form of ICP6 was responsible for the attenuation of KOS-NA in vivo and resulted in diminished ICP6 protein levels and antiapoptotic effect. Thus, we have determined that subtle alteration of the UL39 gene regulates expression and functions of ICP6 and severely impacts HSV-1 pathogenesis, potentially making KOS-NA a promising vaccine candidate against HSV-1.


Asunto(s)
Proteínas de la Cápside , Herpes Simple , Herpesvirus Humano 1/fisiología , Mutación Puntual , Activación Viral/genética , Latencia del Virus/genética , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Herpes Simple/genética , Herpes Simple/metabolismo , Herpes Simple/patología , Vacunas contra el Virus del Herpes Simple/genética , Vacunas contra el Virus del Herpes Simple/metabolismo , Ratones , Células Vero , Proteínas Virales/biosíntesis , Proteínas Virales/genética
2.
J Virol ; 85(23): 12631-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21937654

RESUMEN

In cell culture experiments, phosphorylation appears to be a critical regulator of the herpes simplex virus 1 (HSV-1) immediate-early (IE) protein, ICP0, which is an E3 ubiquitin ligase that transactivates viral gene expression. Three major regions of phosphorylation in ICP0 (amino acids 224 to 232, 365 to 371, and 508 to 518) have been identified, and mutant viruses that block phosphorylation sites within each region (termed Phos 1, 2, and 3, respectively) have been constructed. Previous studies indicated that replication of Phos 1 is significantly reduced compared to that of wild-type virus in cell culture (C. Boutell, et al., J. Virol. 82:10647-10656, 2008). To determine the effects these phosphorylation site mutations have on the viral life cycle in vivo, mice were ocularly infected with wild-type HSV-1, the Phos mutants, or their marker rescue counterparts. Subsequently, viral replication, establishment of latency, and viral explant-induced reactivation of these viruses were examined. Relative to wild-type virus, Phos 1 eye titers were reduced as much as 7- and 18-fold on days 1 and 5 postinfection, respectively. Phos 2 eye titers showed a decrease of 6-fold on day 1 postinfection. Titers of Phos 1 and 2 trigeminal ganglia were reduced as much as 16- and 20-fold, respectively, on day 5 postinfection. Additionally, the reactivation efficiencies of Phos 1 and 2 were impaired relative to wild-type HSV-1, although both viruses established wild-type levels of latency in vivo. The acute replication, latency, and reactivation phenotypes of Phos 3 were similar to those of wild-type HSV-1. We conclude from these studies that phosphorylation is likely a key modulator of ICP0's biological activities in a mouse ocular model of HSV-1 infection.


Asunto(s)
Oftalmopatías/virología , Herpes Simple/virología , Herpesvirus Humano 1/patogenicidad , Proteínas Inmediatas-Precoces/genética , Mutación/genética , Ganglio del Trigémino/virología , Ubiquitina-Proteína Ligasas/genética , Activación Viral , Replicación Viral , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Oftalmopatías/metabolismo , Femenino , Genoma Viral , Herpes Simple/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Ratones , Datos de Secuencia Molecular , Fosforilación , Homología de Secuencia de Aminoácido , Transcripción Genética , Ganglio del Trigémino/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células Vero , Latencia del Virus
3.
Cytometry A ; 75(7): 634-41, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19504579

RESUMEN

Current methods for monitoring E3 ubiquitin ligase activity in cell culture or in vivo are limited. As a result, the degradation of cellular targets by many E3 ubiquitin ligases in live cells has not yet been examined. For this study, a target of an E3 ubiquitin ligase was expressed as a fluorescently labeled protein in cell culture. If the E3 ubiquitin ligase mediates the degradation of a target protein in cell culture, it is expected that the target will show a reduced fluorescence signal by FCM analysis. We initially used the E3 ubiquitin ligase, herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0) and one of its targets, promyelocytic leukemia (PML) protein, to determine the feasibility of our approach. Cells expressing a PML-GFP fusion protein were selected by cell sorting and infected with an adenoviral vector expressing ICP0. In contrast to mock-infected cells, only PML-GFP-expressing cells infected with the ICP0 adenoviral vector led to a significant decrease in the fluorescence signal of PML-GFP when examined by fluorescence microscopy and FCM analysis. Our results suggest that it is possible to examine the live activity of an E3 ubiquitin ligase (via one of its targets) in cell culture by FCM analysis.


Asunto(s)
Citometría de Flujo/métodos , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA