Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Front Physiol ; 14: 1144620, 2023.
Article En | MEDLINE | ID: mdl-37082237

Introduction: In experimental myocardial infarction with reduced ejection fraction causing overt congestive heart failure, the control of renal sympathetic nerve activity (RSNA) by the cardio-renal baroreflex was impaired. The afferent vagal nerve activity under these experimental conditions had a lower frequency at saturation than that in controls. Hence, by investigating respective first neurons in the nodose ganglion (NG), we wanted to test the hypothesis that after myocardial infarction with still-preserved ejection fraction, the cardiac afferent nerve pathway is also already impaired. Material and methods: A myocardial infarction was induced by coronary artery ligature. After 21 days, nodose ganglion neurons with cardiac afferents from rats with myocardial infarction were cultured. A current clamp was used to characterize neurons as "tonic," i.e., sustained action potential (AP) firing, or "phasic," i.e., <5 APs upon current injection. Cardiac ejection fraction was measured using echocardiography; RSNA was recorded to evaluate the sensitivity of the cardiopulmonary baroreflex. Renal and cardiac histology was studied for inflammation and fibrosis markers. Results: A total of 192 neurons were investigated. In rats, after myocardial infarction, the number of neurons with a tonic response pattern increased compared to that in the controls (infarction vs. control: 78.6% vs. 48.5%; z-test, *p < 0.05), with augmented production of APs (23.7 ± 2.86 vs. 15.5 ± 1.86 APs/600 ms; mean ± SEM, t-test, *p < 0.05). The baseline activity of RSNA was subtly increased, and its control by the cardiopulmonary baroreflex was impaired following myocardial infarction: the fibrosis marker collagen I augmented in the renal interstitium. Discussion: After myocardial infarction with still-preserved ejection fraction, a complex impairment of the afferent limb of the cardio-renal baroreflex caused dysregulation of renal sympathetic nerve activity with signs of renal fibrosis.

2.
Brain Behav Immun Health ; 24: 100494, 2022 Oct.
Article En | MEDLINE | ID: mdl-35965838

Anesthetics penetrate the blood-brain-barrier (BBB) and - as confirmed preclinically - transiently disrupt it. An analogous consequence in humans has remained unproven. In mice, we previously reported that upon BBB dysfunction, the brain acts as 'immunoprecipitator' of autoantibodies against N-methyl-D-aspartate-receptor subunit-NR1 (NMDAR1-AB). We thus hypothesized that during human anesthesia, pre-existing NMDAR1-AB will specifically bind to brain. Screening of N = 270 subjects undergoing general anesthesia during cardiac surgery for serum NMDAR1-AB revealed N = 25 NMDAR1-AB seropositives. Only N = 14 remained positive post-surgery. No changes in albumin, thyroglobulin or CRP were associated with reduction of serum NMDAR1-AB. Thus, upon anesthesia, BBB opening likely occurs also in humans.

3.
Mol Psychiatry ; 27(12): 4974-4983, 2022 12.
Article En | MEDLINE | ID: mdl-34866134

Encephalitis has an estimated prevalence of ≤0.01%. Even with extensive diagnostic work-up, an infectious etiology is identified or suspected in <50% of cases, suggesting a role for etiologically unclear, noninfectious processes. Mild encephalitis runs frequently unnoticed, despite slight neuroinflammation detectable postmortem in many neuropsychiatric illnesses. A widely unexplored field in humans, though clearly documented in rodents, is genetic brain inflammation, particularly that associated with myelin abnormalities, inducing primary white matter encephalitis. We hypothesized that "autoimmune encephalitides" may result from any brain inflammation concurring with the presence of brain antigen-directed autoantibodies, e.g., against N-methyl-D-aspartate-receptor NR1 (NMDAR1-AB), which are not causal of, but may considerably shape the encephalitis phenotype. We therefore immunized young female Cnp-/- mice lacking the structural myelin protein 2'-3'-cyclic nucleotide 3'-phosphodiesterase (Cnp) with a "cocktail" of NMDAR1 peptides. Cnp-/- mice exhibit early low-grade inflammation of white matter tracts and blood-brain barrier disruption. Our novel mental-time-travel test disclosed that Cnp-/- mice are compromised in what-where-when orientation, but this episodic memory readout was not further deteriorated by NMDAR1-AB. In contrast, comparing wild-type and Cnp-/- mice without/with NMDAR1-AB regarding hippocampal learning/memory and motor balance/coordination revealed distinct stair patterns of behavioral pathology. To elucidate a potential contribution of oligodendroglial NMDAR downregulation to NMDAR1-AB effects, we generated conditional NR1 knockout mice. These mice displayed normal Morris water maze and mental-time-travel, but beam balance performance was similar to immunized Cnp-/-. Immunohistochemistry confirmed neuroinflammation/neurodegeneration in Cnp-/- mice, yet without add-on effect of NMDAR1-AB. To conclude, genetic brain inflammation may explain an encephalitic component underlying autoimmune conditions.


Encephalitis , White Matter , Humans , Female , Mice , Animals , Autoantibodies , Neuroinflammatory Diseases , Receptors, N-Methyl-D-Aspartate , Inflammation , Phenotype
4.
Sci Rep ; 11(1): 17099, 2021 08 24.
Article En | MEDLINE | ID: mdl-34429449

Whole-body plethysmography (WBP) is an established method to determine physiological parameters and pathophysiological alteration of breathing in animals and animal models of a variety of diseases. Although frequently used, there is ongoing debate about what exactly is measured by whole-body-plethysmography and how reliable the data derived from this method are. Here, we designed an artificial lung model that enables a thorough evaluation of different predictions about and around whole-body plethysmography. Using our lung model, we confirmed that during WBP two components contribute to the pressure changes detected in the chamber: (1) the increase in the pressure due to heating and moistening of the air during inspiration, termed conditioning; (2) changes in the chamber pressure that depend on airway resistance. Both components overlap and contribute to the temporal pressure-profile measured in the chamber or across the wall of the chamber, respectively. Our data showed that a precise measurement of the breathing volume appears to be hindered by at least two factors: (1) the unknown relative contribution of each of these two components; (2) not only the air in the inspired volume is conditioned during inspiration, but also air within the residual volume and dead space that is recruited during inspiration. Moreover, our data suggest that the expiratory negative pressure peak that is used to determine the enhanced pause (Penh) parameter is not a measure for airway resistance as such but rather a consequence of the animal's response to the airway resistance, using forced or active expiration to overcome the resistance by a higher thoracic pressure.


Lung/physiology , Respiration, Artificial/methods , Ventilators, Mechanical , Animals , Male , Mice , Mice, Inbred C57BL , Plethysmography/instrumentation , Plethysmography/methods , Respiration, Artificial/instrumentation
5.
Mol Psychiatry ; 26(12): 7746-7759, 2021 12.
Article En | MEDLINE | ID: mdl-34331009

The etiology and pathogenesis of "anti-N-methyl-D-aspartate-receptor (NMDAR) encephalitis" and the role of autoantibodies (AB) in this condition are still obscure. While NMDAR1-AB exert NMDAR-antagonistic properties by receptor internalization, no firm evidence exists to date that NMDAR1-AB by themselves induce brain inflammation/encephalitis. NMDAR1-AB of all immunoglobulin classes are highly frequent across mammals with multiple possible inducers and boosters. We hypothesized that "NMDAR encephalitis" results from any primary brain inflammation coinciding with the presence of NMDAR1-AB, which may shape the encephalitis phenotype. Thus, we tested whether following immunization with a "cocktail" of 4 NMDAR1 peptides, induction of a spatially and temporally defined sterile encephalitis by diphtheria toxin-mediated ablation of pyramidal neurons ("DTA" mice) would modify/aggravate the ensuing phenotype. In addition, we tried to replicate a recent report claiming that immunizing just against the NMDAR1-N368/G369 region induced brain inflammation. Mice after DTA induction revealed a syndrome comprising hyperactivity, hippocampal learning/memory deficits, prefrontal cortical network dysfunction, lasting blood brain-barrier impairment, brain inflammation, mainly in hippocampal and cortical regions with pyramidal neuronal death, microgliosis, astrogliosis, modest immune cell infiltration, regional atrophy, and relative increases in parvalbumin-positive interneurons. The presence of NMDAR1-AB enhanced the hyperactivity (psychosis-like) phenotype, whereas all other readouts were identical to control-immunized DTA mice. Non-DTA mice with or without NMDAR1-AB were free of any encephalitic signs. Replication of the reported NMDAR1-N368/G369-immunizing protocol in two large independent cohorts of wild-type mice completely failed. To conclude, while NMDAR1-AB can contribute to the behavioral phenotype of an underlying encephalitis, induction of an encephalitis by NMDAR1-AB themselves remains to be proven.


Encephalitis , Receptors, N-Methyl-D-Aspartate , Animals , Autoantibodies , Blood-Brain Barrier , Mice , Pyramidal Cells
6.
Acta Neuropathol Commun ; 9(1): 121, 2021 07 02.
Article En | MEDLINE | ID: mdl-34215338

Up to one person in a population of 10,000 is diagnosed once in lifetime with an encephalitis, in 50-70% of unknown origin. Recognized causes amount to 20-50% viral infections. Approximately one third of affected subjects develops moderate and severe subsequent damage. Several neurotropic viruses can directly infect pyramidal neurons and induce neuronal death in cortex and hippocampus. The resulting encephalitic syndromes are frequently associated with cognitive deterioration and dementia, but involve numerous parallel and downstream cellular and molecular events that make the interpretation of direct consequences of sudden pyramidal neuronal loss difficult. This, however, would be pivotal for understanding how neuroinflammatory processes initiate the development of neurodegeneration, and thus for targeted prophylactic and therapeutic interventions. Here we utilized adult male NexCreERT2xRosa26-eGFP-DTA (= 'DTA') mice for the induction of a sterile encephalitis by diphtheria toxin-mediated ablation of cortical and hippocampal pyramidal neurons which also recruits immune cells into gray matter. We report multifaceted aftereffects of this defined process, including the expected pathology of classical hippocampal behaviors, evaluated in Morris water maze, but also of (pre)frontal circuit function, assessed by prepulse inhibition. Importantly, we modelled in encephalitis mice novel translationally relevant sequelae, namely altered social interaction/cognition, accompanied by compromised thermoreaction to social stimuli as convenient readout of parallel autonomic nervous system (dys)function. High resolution magnetic resonance imaging disclosed distinct abnormalities in brain dimensions, including cortical and hippocampal layering, as well as of cerebral blood flow and volume. Fluorescent tracer injection, immunohistochemistry and brain flow cytometry revealed persistent blood-brain-barrier perturbance and chronic brain inflammation. Surprisingly, blood flow cytometry showed no abnormalities in circulating major immune cell subsets and plasma high-mobility group box 1 (HMGB1) as proinflammatory marker remained unchanged. The present experimental work, analyzing multidimensional outcomes of direct pyramidal neuronal loss, will open new avenues for urgently needed encephalitis research.


Disease Models, Animal , Encephalitis/pathology , Gray Matter/pathology , Pyramidal Cells/pathology , Animals , Male , Mice , Mice, Inbred C57BL
7.
Kidney Blood Press Res ; 46(3): 331-341, 2021.
Article En | MEDLINE | ID: mdl-34034251

BACKGROUND: Angiotensin II (Ang II) and the renal sympathetic nervous system exert a strong influence on renal sodium and water excretion. We tested the hypothesis that already low doses of an Ang II inhibitor (candesartan) will result in similar effects on tubular sodium and water reabsorption in congestive heart failure (CHF) as seen after renal denervation (DNX). METHODS: Measurement of arterial blood pressure, heart rate (HR), renal sympathetic nerve activity (RSNA), glomerular filtration rate (GFR), renal plasma flow (RPF), urine volume, and urinary sodium. To assess neural control of volume homeostasis, 21 days after the induction of CHF via myocardial infarction rats underwent volume expansion (0.9% NaCL; 10% body weight) to decrease RSNA. CHF rat and controls with or without DNX or pretreated with the Ang II type-1 receptor antagonist candesartan (0.5 ug i.v.) were studied. RESULTS: CHF rats excreted only 68 + 10.2% of the volume load (10% body weight) in 90 min. CHF rats pretreated with candesartan or after DNX excreted from 92 to 103% like controls. Decreases of RSNA induced by volume expansion were impaired in CHF rats but unaffected by candesartan pointing to an intrarenal drug effect. GFR and RPF were not significantly different in controls or CHF. CONCLUSION: The prominent function of increased RSNA - retaining salt and water - could no longer be observed after renal Ang II receptor blockade in CHF rats.


Angiotensin II Type 1 Receptor Blockers/pharmacology , Benzimidazoles/pharmacology , Biphenyl Compounds/pharmacology , Kidney/drug effects , Kidney/innervation , Tetrazoles/pharmacology , Angiotensin II/metabolism , Animals , Arterial Pressure/drug effects , Denervation , Glomerular Filtration Rate/drug effects , Heart Rate/drug effects , Kidney/physiology , Male , Rats, Sprague-Dawley , Sodium/metabolism , Water/metabolism
8.
Mol Psychiatry ; 26(6): 1790-1807, 2021 06.
Article En | MEDLINE | ID: mdl-33564132

Physical activity and cognitive challenge are established non-invasive methods to induce comprehensive brain activation and thereby improve global brain function including mood and emotional well-being in healthy subjects and in patients. However, the mechanisms underlying this experimental and clinical observation and broadly exploited therapeutic tool are still widely obscure. Here we show in the behaving brain that physiological (endogenous) hypoxia is likely a respective lead mechanism, regulating hippocampal plasticity via adaptive gene expression. A refined transgenic approach in mice, utilizing the oxygen-dependent degradation (ODD) domain of HIF-1α fused to CreERT2 recombinase, allows us to demonstrate hypoxic cells in the performing brain under normoxia and motor-cognitive challenge, and spatially map them by light-sheet microscopy, all in comparison to inspiratory hypoxia as strong positive control. We report that a complex motor-cognitive challenge causes hypoxia across essentially all brain areas, with hypoxic neurons particularly abundant in the hippocampus. These data suggest an intriguing model of neuroplasticity, in which a specific task-associated neuronal activity triggers mild hypoxia as a local neuron-specific as well as a brain-wide response, comprising indirectly activated neurons and non-neuronal cells.


Hypoxia , Neurons , Animals , Brain , Hippocampus , Humans , Mice , Neuronal Plasticity
...