Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39158658

RESUMEN

Azole fungicides are highly suspected endocrine disruptors (EDs) and are frequently detected in surface water. Among them, there are prochloraz (PCZ), a commonly used  molecule for ED studies, and imazalil (IMZ), a highly suspected ED. Little is known about their toxicokinetic (TK) behavior in fish. Hence, research suggested that an improved risk assessment could be achieved by gaining insight into their TK behavior. The aim of this study is to understand and model the TK of both substances in different fish species, irrespective of the scheme of exposure. TK data from the literature were retrieved including different modes of exposure (per os and waterborne). In addition, two experiments on zebrafish exposed to either IMZ or PCZ were performed to address the lack of in vivo TK data. A physiologically based kinetic (PBK) model applied to IMZ and PCZ was developed, capable of modeling different exposure scenarios. The parameters of the PBK model were simultaneously calibrated on datasets reporting internal concentration in several organs in three fish species (original and literature datasets) by Bayesian methods (Monte Carlo Markov Chain). Model predictions were then compared to other experimental data (i.e., excluded from the calibration step) to assess the predictive performance of the model. The results strongly suggest that PCZ and IMZ are actively transported across the gills, resulting in a small fraction being effectively absorbed by the fish. The model's results also confirm that both molecules are extensively metabolized by the liver into mainly glucuronate conjugates. Overall, the model performances were satisfying, predicting internal concentrations in several key organs. On average, 90% of experimental data were predicted within a two-fold range. The PBK model allows the understanding of IMZ and PCZ kinetics profiles by accurately predicting internal concentrations in three different fish species regardless of the exposure scenario. This enables a proper understanding of the mechanism of action of EDs at the molecular initiating event (MIE) by predicting bioaccumulation in target organs, thus linking this MIE to a possible adverse outcome.

2.
Environ Int ; 189: 108728, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850672

RESUMEN

Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety. The EU PARC project highlights BPA alternatives as priority chemicals and consolidates information on BPA alternatives, with a focus on environmental relevance and on the identification of the research gaps. The review highlighted aspects and future perspectives. In brief, an extension of environmental monitoring is crucial, extending it to cover BPA alternatives to track their levels and facilitate the timely implementation of mitigation measures. The biological activity has been studied for BPA alternatives, but in a non-systematic way and prioritized a limited number of chemicals. For several BPA alternatives, the data has already provided substantial evidence regarding their potential harm to the environment. We stress the importance of conducting more comprehensive assessments that go beyond the traditional reproductive studies and focus on overlooked relevant endpoints. Future research should also consider mixture effects, realistic environmental concentrations, and the long-term consequences on biota and ecosystems.


Asunto(s)
Compuestos de Bencidrilo , Monitoreo del Ambiente , Contaminantes Ambientales , Fenoles , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Contaminantes Ambientales/toxicidad , Monitoreo del Ambiente/métodos , Animales , Humanos , Disruptores Endocrinos/toxicidad
3.
Development ; 150(7)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36971372

RESUMEN

Computational analysis of bio-images by deep learning (DL) algorithms has made exceptional progress in recent years and has become much more accessible to non-specialists with the development of ready-to-use tools. The study of oogenesis mechanisms and female reproductive success has also recently benefited from the development of efficient protocols for three-dimensional (3D) imaging of ovaries. Such datasets have a great potential for generating new quantitative data but are, however, complex to analyze due to the lack of efficient workflows for 3D image analysis. Here, we have integrated two existing open-source DL tools, Noise2Void and Cellpose, into an analysis pipeline dedicated to 3D follicular content analysis, which is available on Fiji. Our pipeline was developed on larvae and adult medaka ovaries but was also successfully applied to different types of ovaries (trout, zebrafish and mouse). Image enhancement, Cellpose segmentation and post-processing of labels enabled automatic and accurate quantification of these 3D images, which exhibited irregular fluorescent staining, low autofluorescence signal or heterogeneous follicles sizes. In the future, this pipeline will be useful for extensive cellular phenotyping in fish or mammals for developmental or toxicology studies.


Asunto(s)
Aprendizaje Profundo , Femenino , Animales , Ratones , Ovario/diagnóstico por imagen , Pez Cebra , Imagenología Tridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Mamíferos
5.
Artículo en Inglés | MEDLINE | ID: mdl-32877737

RESUMEN

Transgenic zebrafish models are efficiently used to study the effects of endocrine disrupting chemicals (EDC); thereby informing on their mechanisms of action. However, given the reported differences between zebrafish strains at the genetical, physiological and behavioral levels; care should be taken before using these transgenic models for EDC testing. In the present study, we undertook a set of experiments in different transgenic and/or mutant zebrafish strains of interest for EDC testing: casper, cyp19a1a-eGFP, cyp19a1a-eGFP-casper, cyp11c1-eGFP, cyp11c1-eGFP-casper. Some behavioral traits, and some biochemical and reproductive physiological endpoints commonly used in EDC testing were assessed and compared to those obtained in WT AB zebrafish to ensure that transgene insertion and/or mutations do not negatively modify basal reproductive physiology or behavior of the fish. Behavioral traits considered as anxiety and sociality have been monitored. Sociality was evaluated by monitoring the time spent near congeners in a shuttle box while anxiety was evaluated using the Novel tank diving test. No critical difference was observed between strains for either sociality or anxiety level. Concerning reproduction, no significant difference in the number of eggs laid per female, in the viability of eggs or in the female circulating VTG concentrations was noted between the 5 transgenic/mutants and the WT AB zebrafish studied. In summary, the transgene insertion and the mutations had no influence on the endpoints measured in basal conditions. These results were a prerequisite to the use of these transgenic/mutant models for EDC testing. Next step will be to determine the sensitivity of these biological models to chemical exposure to accurately validate their use in existing fish assays for EDC testing.


Asunto(s)
Animales Modificados Genéticamente/fisiología , Animales Salvajes/fisiología , Disruptores Endocrinos/farmacología , Modelos Animales , Reproducción/efectos de los fármacos , Pez Cebra/fisiología , Animales , Femenino , Masculino , Pez Cebra/genética
6.
Environ Sci Technol ; 54(15): 9510-9518, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32650635

RESUMEN

The environmental risk of natural and synthetic ligands of the nuclear progesterone receptor (nPR) has been pointed out, however there is still a lack of mechanistic information regarding their ability to interact with nuclear PR in aquatic species. To identify possible interspecies differences, we assessed in vitro the ability of manifold progestins to transactivate zebrafish (zf) and human (h) PRs, using two established reporter cell lines, U2OS-zfPR and HELN-hPR, respectively. Reference ligands highlighted some differences between the two receptors. The reference human agonist ligands promegestone and progesterone induced luciferase activity in both cell lines in a concentration-dependent manner, whereas the natural zebrafish progestin 17α,20ß-dihydroxy-4-pregnen-3-one activated zfPR but not hPR. The potent human PR antagonist mifepristone (RU486) blocked PR-induced luciferase in both cell models but with different potencies. In addition, a set of 22 synthetic progestins were screened on the two cell lines. Interestingly, all of the tested compounds activated hPR in the HELN-hPR cell line, whereas the majority of them acted as zfPR antagonists in U2OS-zfPR. Such zfPR-specific response was further confirmed in zebrafish liver cells. This study provides novel information regarding the activity of a large set of progestins on human and zebrafish PR and highlights major interspecies differences in their activity, which may result in differential effects of progestins between fish and humans.


Asunto(s)
Progesterona , Progestinas , Animales , Humanos , Mifepristona/farmacología , Receptores de Progesterona , Pez Cebra
7.
Aquat Toxicol ; 220: 105403, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31927064

RESUMEN

Transgenic fish are powerful models that can provide mechanistic information regarding the endocrine activity of test chemicals. In this study, our objective was to use a newly developed transgenic zebrafish line expressing eGFP under the control of the cyp19a1a promoter in the OECD Fish Short Term Reproduction Assay (TG 229) to provide additional mechanistic information on tested substances. For this purpose, we exposed adult transgenic zebrafish to a reference substance of the TG 229, i.e. prochloraz (PCZ; 1.7, 17.2 and 172.6 µg/L). In addition to "classical" endpoints used in the TG 229 (reproductive outputs, vitellogenin), the fluorescence intensity of the ovaries was monitored at 4 different times of exposure using in vivo imaging. Our data revealed that 172.6 µg/L PCZ significantly decreased the number of eggs laid per female per day and the concentrations of vitellogenin in females, reflecting the decreasing E2 synthesis due to the inhibition of the ovarian aromatase activities. At 7 and 14 days, GFP intensities in ovaries were similar over the treatment groups but significantly increased after 21 days at 17.2 and 172.6 µg/L. A similar profile was observed for the endogenous cyp19a1a expression measured by qPCR thereby confirming the reliability of the GFP measurement for assessing aromatase gene expression. The overexpression of the cyp19a1a gene likely reflects a compensatory response to the inhibitory action of PCZ on aromatase enzymatic activities. Overall, this study illustrates the feasibility of using the cyp19a1a-eGFP transgenic line for assessing the effect of PCZ in an OECD test guideline while providing complementary information on the time- and concentration-dependent effects of the compound, without disturbing reproduction of fish. The acquisition of this additional mechanistic information on a key target gene through in vivo fluorescence imaging of the ovaries was realized without increasing the number of individuals.


Asunto(s)
Animales Modificados Genéticamente , Aromatasa/genética , Disruptores Endocrinos/toxicidad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Reproducción/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/metabolismo , Femenino , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/genética , Guías como Asunto , Organización para la Cooperación y el Desarrollo Económico , Ovario/efectos de los fármacos , Ovario/metabolismo , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados , Vitelogeninas/metabolismo , Pez Cebra/metabolismo
8.
Int J Mol Sci ; 19(4)2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29614754

RESUMEN

Comprehension of compound interactions in mixtures is of increasing interest to scientists, especially from a perspective of mixture risk assessment. However, most of conducted studies have been dedicated to the effects on gonads, while only few of them were. interested in the effects on the central nervous system which is a known target for estrogenic compounds. In the present study, the effects of estradiol (E2), a natural estrogen, and genistein (GEN), a phyto-estrogen, on the brain ER-regulated cyp19a1b gene in radial glial cells were investigated alone and in mixtures. For that, zebrafish-specific in vitro and in vivo bioassays were used. In U251-MG transactivation assays, E2 and GEN produced antagonistic effects at low mixture concentrations. In the cyp19a1b-GFP transgenic zebrafish, this antagonism was observed at all ratios and all concentrations of mixtures, confirming the in vitro effects. In the present study, we confirm (i) that our in vitro and in vivo biological models are valuable complementary tools to assess the estrogenic potency of chemicals both alone and in mixtures; (ii) the usefulness of the ray design approach combined with the concentration-addition modeling to highlight interactions between mixture components.


Asunto(s)
Aromatasa/metabolismo , Encéfalo/metabolismo , Estradiol/farmacología , Genisteína/farmacología , Animales , Animales Modificados Genéticamente , Aromatasa/genética , Encéfalo/efectos de los fármacos , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Gen Comp Endocrinol ; 261: 179-189, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28648994

RESUMEN

In zebrafish, there exists a clear need for new tools to study sex differentiation dynamic and its perturbation by endocrine disrupting chemicals. In this context, we developed and characterized a novel transgenic zebrafish line expressing green fluorescent protein (GFP) under the control of the zebrafish cyp19a1a (gonadal aromatase) promoter. In most gonochoristic fish species including zebrafish, cyp19a1a, the enzyme responsible for the synthesis of estrogens, has been shown to play a critical role in the processes of reproduction and sexual differentiation. This novel cyp19a1a-eGFP transgenic line allowed a deeper characterization of expression and localization of cyp19a1a gene in zebrafish gonads both at the adult stage and during development. At the adult stage, GFP expression was higher in ovaries than in testis. We showed a perfect co-expression of GFP and endogenous Cyp19a1a protein in gonads that was mainly localized in the cytoplasm of peri-follicular cells in the ovary and of Leydig and germ cells in the testis. During development, GFP was expressed in all immature gonads of 20 dpf-old zebrafish. Then, GFP expression increased in early differentiated female at 30 and 35dpf to reach a high GFP intensity in well-differentiated ovaries at 40dpf. On the contrary, males consistently displayed low GFP expression as compared to female whatever their stage of development, resulting in a clear dimorphic expression between both sexes. Interestingly, fish that undergoes ovary-to-testis transition (35 and 40dpf) presented GFP levels similar to males or intermediate between females and males. In this transgenic line our results confirm that cyp19a1a is expressed early during development, before the histological differentiation of the gonads, and that the down-regulation of cyp19a1a expression is likely responsible for the testicular differentiation. Moreover, we show that although cyp19a1a expression exhibits a clear dimorphic expression pattern in gonads during sexual differentiation, its expression persists whatever the sex suggesting that estradiol synthesis is important for gonadal development of both sexes. Monitoring the expression of GFP in control and exposed-fish will help determine the sensitivity of this transgenic line to EDCs and to refine mechanistic based-assays for the study of EDCs. In fine, this transgenic zebrafish line will be a useful tool to study physiological processes such as reproduction and sexual differentiation, and their perturbations by EDCs.


Asunto(s)
Aromatasa/genética , Gónadas/metabolismo , Diferenciación Sexual/genética , Proteínas de Pez Cebra/genética , Pez Cebra , Animales , Animales Modificados Genéticamente , Aromatasa/metabolismo , Embrión no Mamífero , Femenino , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Células Germinativas/metabolismo , Células Germinativas/fisiología , Gónadas/fisiología , Proteínas Fluorescentes Verdes/genética , Masculino , Ovario/embriología , Ovario/metabolismo , Diferenciación Sexual/fisiología , Testículo/embriología , Testículo/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Toxicol Appl Pharmacol ; 305: 12-21, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27245768

RESUMEN

The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. We showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC50 ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERß1 or zfERß2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation.


Asunto(s)
Aromatasa/metabolismo , Neuroglía/efectos de los fármacos , Congéneres de la Progesterona/farmacología , Proteínas de Pez Cebra/metabolismo , Andrógenos/farmacología , Animales , Animales Modificados Genéticamente , Aromatasa/genética , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular Tumoral , Estradiol/farmacología , Estrógenos/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Neuroglía/metabolismo , Receptores de Estrógenos/metabolismo , Testosterona/farmacología , Pez Cebra , Proteínas de Pez Cebra/genética
11.
J Appl Toxicol ; 36(6): 863-71, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26857037

RESUMEN

The present study was conducted to assess the effects of Cd exposure on estrogen signaling in the zebrafish brain, as well as the potential protective role of Zn against Cd-induced toxicity. For this purpose, the effects on transcriptional activation of the estrogen receptors (ERs), aromatase B (Aro-B) protein expression and molecular expression of related genes were examined in vivo using wild-type and transgenic zebrafish embryos. For in vitro studies, an ER-negative glial cell line (U251MG) transfected with different zebrafish ER subtypes (ERα, ERß1 and ERß2) was also used. Embryos were exposed either to estradiol (E2 ), Cd, E2 +Cd or E2 +Cd+Zn for 72 h and cells were exposed to the same treatments for 30 h. Our results show that E2 treatment promoted the transcriptional activation of ERs and increased Aro-B expression, at both the protein and mRNA levels. Although exposure to Cd, does not affect the studied parameters when administered alone, it significantly abolished the E2 -stimulated transcriptional response of the reporter gene for the three ER subtypes in U251-MG cells, and clearly inhibited the E2 induction of Aro-B in radial glial cells of zebrafish embryos. These inhibitory effects were accompanied by a significant downregulation of the expression of esr1, esr2a, esr2b and cyp19a1b genes compared to the E2 -treated group used as a positive control. Zn administration during simultaneous exposure to E2 and Cd strongly stimulated zebrafish ERs transactivation and increased Aro-B protein expression, whereas mRNA levels of the three ERs as well as the cyp19a1b remained unchanged in comparison with Cd-treated embryos. In conclusion, our results clearly demonstrate that Cd acts as a potent anti-estrogen in vivo and in vitro, and that Cd-induced E2 antagonism can be reversed, at the protein level, by Zn supplement. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Encéfalo/efectos de los fármacos , Intoxicación por Cadmio/prevención & control , Cadmio/toxicidad , Embrión no Mamífero/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra , Zinc/uso terapéutico , Animales , Animales Modificados Genéticamente , Aromatasa/genética , Aromatasa/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Cadmio/química , Intoxicación por Cadmio/embriología , Intoxicación por Cadmio/metabolismo , Intoxicación por Cadmio/veterinaria , Línea Celular , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Antagonistas de Estrógenos/química , Antagonistas de Estrógenos/toxicidad , Estrógenos/agonistas , Estrógenos/química , Estrógenos/metabolismo , Enfermedades de los Peces/embriología , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/patología , Enfermedades de los Peces/prevención & control , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes Reporteros/efectos de los fármacos , Humanos , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/química , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Contaminantes Químicos del Agua/antagonistas & inhibidores , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/agonistas , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Cigoto/efectos de los fármacos , Cigoto/metabolismo , Cigoto/patología
12.
Artículo en Inglés | MEDLINE | ID: mdl-26099948

RESUMEN

In zebrafish, the identification of the cells expressing steroidogenic enzymes and their regulators is far from completely fulfilled though it could provide crucial information on the elucidation of the role of these enzymes. The aim of this study was to better characterize the expression pattern of steroidogenic enzymes involved in estrogen and androgen production (Cyp17-I, Cyp11c1, Cyp19a1a and Cyp19a1b) and one of their regulators (Foxl2a) in zebrafish gonads. By using immunohistochemistry, we localized the steroid-producing cells in mature zebrafish gonads and determined different expression patterns between males and females. All these steroidogenic enzymes and Foxl2a were detected both in the testis and ovary. In the testis, they were all localized both in Leydig and germ cells except Cyp19a1b which was only detected in germ cells. In the ovary, Cyp17-I, Cyp19a1a and Foxl2a were immunolocalized in both somatic and germ cells while Cyp19a1b was only detected in germ cells and Cyp11c1 in somatic cells. Moreover, Cyp19a1a and Foxl2a did not display exactly the same patterns of spatial localization but their expressions were correlated suggesting a possible regulation of cyp19a1a gene by Foxl2a in zebrafish. Comparative analysis revealed a dimorphic expression of Cyp11c1, Cyp19a1a, Cyp19a1b and Foxl2a between males and females. Overall, our study provides a detailed description of the expression of proteins involved in the biosynthesis of steroidal hormones at the cellular scale within gonads, which is critical to further elucidating the intimate roles of the enzymes and the use of the zebrafish as a model in the field of endocrinology.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Factores de Transcripción Forkhead/metabolismo , Gónadas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Aromatasa/metabolismo , Femenino , Proteína Forkhead Box L2 , Gónadas/citología , Inmunohistoquímica , Isoenzimas/metabolismo , Masculino , Microscopía Fluorescente , Ovario/citología , Ovario/metabolismo , Esteroide 11-beta-Hidroxilasa/metabolismo , Esteroide 17-alfa-Hidroxilasa/metabolismo , Testículo/citología , Testículo/metabolismo
13.
Environ Sci Pollut Res Int ; 20(5): 2747-60, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23340899

RESUMEN

Clotrimazole is an azole fungicide used as a human pharmaceutical that is known to inhibit cytochrome P450 (CYP) enzymatic activities, including several steroidogenic CYP. In a previous report, we showed that a 7-day exposure to clotrimazole induced the expression of genes related to steroidogenesis in the testes as a compensatory response, involving the activation of the Fsh/Fshr pathway. In this context, the aim of the present study was to assess the effect of an in vivo 21-day chronic exposure to clotrimazole (30-197 µg/L) on zebrafish testis function, i.e., spermatogenesis and androgen release. The experimental design combined (1) gene transcript levels measurements along the brain-pituitary-gonad axis, (2) 11-ketotestosterone (11-KT) quantification in the blood, and (3) histology of the testes, including morphometric analysis. The chronic exposure led to an induction of steroidogenesis-related genes and fshr in the testes as well as fshß in the pituitary. Moreover, increases of the gonadosomatic index and of the volume proportion of interstitial Leydig cells were observed in clotrimazole-exposed fish. In accordance with these histological observations, the circulating concentration of 11-KT had increased. Morphometric analysis of the testes did not show an effect of clotrimazole on meiotic (spermatocytes) or postmeiotic (spermatids and spermatozoa) stages, but we observed an increase in the number of type A spermatogonia, in agreement with an increase in mRNA levels of piwil1, a specific molecular marker of type A spermatogonia. Our study demonstrated that clotrimazole is able to affect testicular physiology and raised further concern about the impact of clotrimazole on reproduction.


Asunto(s)
Antifúngicos/farmacología , Clotrimazol/farmacología , Testículo/efectos de los fármacos , Contaminantes Químicos del Agua/farmacología , Pez Cebra/metabolismo , Andrógenos/sangre , Animales , Cromatografía Líquida de Alta Presión , Ensayo de Inmunoadsorción Enzimática , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Espermatogénesis/efectos de los fármacos , Testículo/anatomía & histología , Testículo/enzimología , Testosterona/análogos & derivados , Testosterona/sangre , Pez Cebra/genética
14.
J Endocrinol ; 216(3): 375-88, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23283575

RESUMEN

Oestrogens can affect expression of genes encoding steroidogenic enzymes in fish gonads. However, little information is available on their effects at the protein level. In this context, we first analysed the expression of key steroidogenic enzyme genes and proteins in zebrafish testis, paying attention also to other cell types than Leydig cells. Gene expression was analysed by quantitative PCR on fluorescence-activated cell-sorting fractions coupled or not to differential plating, while protein synthesis was studied by immunohistochemistry using specific antibodies against zebrafish Cyp17a1, Cyp19a1a and Cyp19a1b. Furthermore, we have evaluated the effect of oestrogen treatment (17ß-oestradiol (E(2)), 10 nM) on the localization of these enzymes after 7 and 14 days of in vivo exposure in order to study how oestrogen-mediated modulation of their expression is linked to oestrogen effects on spermatogenesis. The major outcomes of this study are that Leydig cells express Cyp17a1 and Cyp19a1a, while testicular germ cells express Cyp17a1 and both, Cyp19a1a and Cyp19a1b. As regards Cyp17a1, both protein and mRNA seem to be quantitatively dominating in Leydig cells. Moreover, E(2) exposure specifically affects only Leydig cell Cyp17a1 synthesis, preceding the disruption of spermatogenesis. The oestrogen-induced suppression of the androgen production capacity in Leydig cells is a major event in altering spermatogenesis, while germ cell steroidogenesis may have to be fuelled by precursors from Leydig cells. Further studies are needed to elucidate the functionality of steroidogenic enzymes in germ cells and their potential role in testicular physiology.


Asunto(s)
Aromatasa/genética , Estradiol/farmacología , Estrógenos/farmacología , Esteroide 17-alfa-Hidroxilasa/genética , Testículo/efectos de los fármacos , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Aromatasa/metabolismo , Expresión Génica/efectos de los fármacos , Células Germinativas/efectos de los fármacos , Células Germinativas/enzimología , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/enzimología , Masculino , Espermatogénesis/efectos de los fármacos , Espermatogénesis/fisiología , Esteroide 17-alfa-Hidroxilasa/metabolismo , Testículo/enzimología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
15.
Toxicology ; 298(1-3): 30-9, 2012 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-22564764

RESUMEN

Clotrimazole is a pharmaceutical fungicide known to inhibit several cytochrome P450 enzyme activities, including several steroidogenic enzymes. This study aimed to assess short-term in vivo effects of clotrimazole exposure on blood 11-ketotestosterone (11-KT) levels and on the transcriptional activity of genes in pituitary and testis tissue that are functionally relevant for androgen production with the view to further characterize the mode of action of clotrimazole on the hypothalamus-pituitary-gonad axis in zebrafish, a model vertebrate in toxicology. Adult male zebrafish were exposed to measured concentrations in water of 71, 159 and 258µg/L of clotrimazole for 7 days. Expression of pituitary gonadotropins ß subunit (lhb, fshb), testicular gonadotropins receptors (lhcgr, fshr) and testicular steroidogenesis-related genes (e.g., star, cyp17a1, cyp11c1) were assessed. Blood concentrations of 11-KT were measured. Short-term exposure to clotrimazole induced a concentration-dependent increase of star, cyp17a1, and cyp11c1 gene expression and Cyp17a1 and Cy11c1 protein synthesis in Leydig cells, but androgen levels in blood remained unchanged. fshb, but not lhb mRNA levels in the pituitary tended to increase in clotrimazole-exposed zebrafish. Testicular expression of the Fsh receptor gene was significantly up-regulated following exposure, when expression of this receptor was significantly correlated to the expression of steroidogenesis-related genes. Moreover, the Fsh-regulated insulin-like growth factor 3 (igf3) gene, a fish-specific Igf peptide expressed in Sertoli cells, was induced in testes. By using a network of genes functioning in pituitary and testis tissue, our study demonstrated that clotrimazole induced a cascade of molecular and cellular events which are in agreement with a role for Fsh (1) in stimulating Leydig cell steroidogenesis to compensate the inhibitory action of clotrimazole on 11-KT synthesis and (2) in inducing the expression of Fsh-regulated igf3 in Sertoli cells.


Asunto(s)
Clotrimazol/toxicidad , Hormona Folículo Estimulante/fisiología , Hormonas Gonadales/metabolismo , Esteroide Hidroxilasas/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Hormonas Gonadales/sangre , Masculino , Tamaño de los Órganos/efectos de los fármacos , Tamaño de los Órganos/fisiología , Esteroide Hidroxilasas/antagonistas & inhibidores , Esteroide Hidroxilasas/sangre , Pez Cebra/crecimiento & desarrollo
16.
Reprod Toxicol ; 33(2): 198-204, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21549831

RESUMEN

There is growing evidence that neuroendocrine circuits controlling development and reproduction are targeted by EDCs. We have previously demonstrated that low concentrations of 17α-ethinylestradiol (EE2) disrupt the development of forebrain GnRH neurons during zebrafish development. The objectives of the present study were to determine whether the weak estrogenic compound, nonylphenol (NP), could elicit similar effects to EE2 and to what extent the estrogen receptors are involved in mediating these effects. Using immunohistochemistry, we confirmed that EE2 exposure induces an increase in the number of GnRH-ir neurons and we demonstrated that NP is able to produce similar effects in a concentration-dependent manner. The effects of both NP and EE2 were shown to be blocked by the estrogen receptors (ERs) antagonist ICI 182-780, demonstrating the involvement of functional ERs in mediating their effects. Altogether, these results highlight the need to consider neuroendocrine networks as critical endpoints in the field of endocrine disruption.


Asunto(s)
Estrógenos/toxicidad , Etinilestradiol/toxicidad , Neuronas/efectos de los fármacos , Fenoles/toxicidad , Receptores de Estrógenos/fisiología , Animales , Aromatasa/metabolismo , Embrión no Mamífero/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Estradiol/análogos & derivados , Estradiol/farmacología , Antagonistas de Estrógenos/farmacología , Fulvestrant , Hormona Liberadora de Gonadotropina/fisiología , Neuronas/fisiología , Prosencéfalo/fisiología , Receptores de Estrógenos/antagonistas & inhibidores , Pez Cebra
17.
Gen Comp Endocrinol ; 174(3): 309-17, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21963961

RESUMEN

The aim of the present study was to characterize P450 17α-hydroxylase/17,20-lyase (cyp17a1) expression in zebrafish and to assess the effect of the pharmaceutical clotrimazole, a known inhibitor of various cytochrome P450 enzyme activities, on testicular gene and protein expression of this enzyme as well as on the testicular release of 11-ketotestosterone (11-KT), a potent androgen in fish. We first showed that cyp17a1 is predominantly expressed in gonads of zebrafish, notably in male. In vivo, clotrimazole induced a concentration-dependent increase of cyp17a1 gene expression and Cyp17-I protein synthesis in zebrafish testis. Using zebrafish testicular explants, we further showed that clotrimazole did not directly affect cyp17a1 expression but that it did inhibit 11-KT release. These novel data deserve further studies on the effect of azole fungicides on gonadal steroidogenesis.


Asunto(s)
Clotrimazol/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Esteroide 17-alfa-Hidroxilasa/genética , Testículo/efectos de los fármacos , Testículo/enzimología , Proteínas de Pez Cebra/genética , Pez Cebra , Animales , Antifúngicos/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/metabolismo , Células Cultivadas , Femenino , Gónadas/efectos de los fármacos , Gónadas/enzimología , Gónadas/metabolismo , Masculino , Cultivo Primario de Células , Esteroide 17-alfa-Hidroxilasa/metabolismo , Testículo/química , Testículo/metabolismo , Testosterona/análogos & derivados , Testosterona/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
18.
Aquat Toxicol ; 105(3-4): 378-84, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21820384

RESUMEN

P450 aromatase catalyses the conversion of C19 androgens to C18 estrogens which is thought to be essential for the regulation of the reproductive function. In this study, brain aromatase activity (AA) was measured monthly over a reproductive cycle in wild roach (Rutilus rutilus) sampled in a reference site in Normandy. AA peaked during the breeding season, reaching 35 fmol mg(-1)min(-1) in both male and female fish, and was low during the rest of the year except for a significant rise in October. AA was correlated with ovary maturation (measured either as gonado-somatic index or by histological analysis of the gonads) and plasma sex-steroid levels (11-ketotestosterone in males and 17-ß-estradiol in females). Measurements of AA in polluted sites showed that activity was significantly upregulated in sites with fish showing high levels of plasma vitellogenin and large proportion of intersexuality (20-50%) thus suggesting the occurrence of estrogenic compounds and their involvement in AA modulation.


Asunto(s)
Aromatasa/metabolismo , Encéfalo/enzimología , Cyprinidae/metabolismo , Exposición a Riesgos Ambientales/efectos adversos , Estaciones del Año , Contaminación Química del Agua/efectos adversos , Animales , Biomarcadores/metabolismo , Encéfalo/efectos de los fármacos , Trastornos del Desarrollo Sexual/inducido químicamente , Disruptores Endocrinos/toxicidad , Estradiol/metabolismo , Femenino , Masculino , Ovario/efectos de los fármacos , Ovario/fisiología , Maduración Sexual/efectos de los fármacos , Testosterona/análogos & derivados , Testosterona/metabolismo , Vitelogeninas/metabolismo
19.
Environ Int ; 37(8): 1342-8, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21722962

RESUMEN

A set of biochemical and histological responses was measured in wild gudgeon collected upstream and downstream of urban and pharmaceutical manufacture effluents. These individual end-points were associated to fish assemblage characterisation. Responses of biotransformation enzymes, neurotoxicity and endocrine disruption biomarkers revealed contamination of investigated stream by a mixture of pollutants. Fish from sampled sites downstream of the industrial effluent exhibited also strong signs of endocrine disruption including vitellogenin induction, intersex and male-biased sex-ratio. These individual effects were associated to a decrease of density and a lack of sensitive fish species. This evidence supports the hypothesis that pharmaceutical compounds discharged in stream are involved in recorded endocrine disruption effects and fish population disturbances and threaten disappearance of resident fish species. Overall, this study gives argument for the utilisation of an effect-based monitoring approach to assess impacts of pharmaceutical manufacture discharges on wild fish populations.


Asunto(s)
Cyprinidae/fisiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Contaminantes Químicos del Agua/toxicidad , Animales , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Trastornos del Desarrollo Sexual/inducido químicamente , Trastornos del Desarrollo Sexual/epidemiología , Industria Farmacéutica , Disruptores Endocrinos/toxicidad , Femenino , Glutatión Transferasa/metabolismo , Gónadas/efectos de los fármacos , Gónadas/metabolismo , Gónadas/patología , Masculino , Preparaciones Farmacéuticas/análisis , Ríos/química , Razón de Masculinidad , Vitelogeninas/metabolismo , Contaminantes Químicos del Agua/análisis
20.
Sci Total Environ ; 408(9): 2146-54, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20116833

RESUMEN

The aim of this study was to assess endocrine disruptive effects in wild population of fish in five French rivers selected to represent different pollution contexts at two seasons (summer and fall). For that purpose, a panel of biometrical parameters (length, weight, and gonado-somatic index: GSI) and biochemical (ethoxyresorufin-O-deethylase: EROD, vitellogenin: VTG, and brain aromatase) and histological biomarkers (gonads histology) were used in chub (Leuciscus cephalus), a common cyprinid fish species. In fish from the reference site, EROD activity and VTG levels were low at the two seasons. Brain aromatase activities (AAs) were similar to other species and increased with increasing GSI and gonad maturation. Among the four contaminated sites, the Jalle d'Eysines River was the most impacted site. At this site, fish were exposed to estrogenic substances as demonstrated by the VTG induction in males and the arrest of development of the gonads that led to lower brain AA compared to fish from the reference site. In fish from other contaminated sites, EROD activity was induced as compared to fish from the reference site and some males had elevated concentrations of VTG. Moreover, the presence of aromatase-inhibiting compounds was demonstrated in the sediments of three contaminated sites, even if the precise nature of contaminants is not known. This study provides new data concerning endocrine disruption in wild fish populations inhabiting French rivers and demonstrates that measurements of in vivo and in vitro aromatase could be used as biomarkers of endocrine disruption in field studies.


Asunto(s)
Cyprinidae/fisiología , Disruptores Endocrinos/toxicidad , Monitoreo del Ambiente/métodos , Agua Dulce/química , Contaminantes Químicos del Agua/toxicidad , Animales , Animales Salvajes , Aromatasa/efectos de los fármacos , Aromatasa/metabolismo , Biomarcadores/metabolismo , Biometría , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Cyprinidae/anatomía & histología , Citocromo P-450 CYP1A1/efectos de los fármacos , Citocromo P-450 CYP1A1/metabolismo , Disruptores Endocrinos/análisis , Femenino , Francia , Sedimentos Geológicos/química , Masculino , Ovario/efectos de los fármacos , Ovario/crecimiento & desarrollo , Ovario/patología , Estaciones del Año , Testículo/efectos de los fármacos , Testículo/crecimiento & desarrollo , Testículo/patología , Vitelogeninas/efectos de los fármacos , Vitelogeninas/metabolismo , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA