Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Virol Methods ; 330: 115029, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243818

RESUMEN

The silkworm-baculovirus expression vector system (silkworm-BEVS), using Bombyx mori nucleopolyhedrovirus (BmNPV) and silkworm larvae or pupae, has been used as a cost-effective expression system for the production of various recombinant proteins. Recently, several gene knockouts in baculoviruses have been shown to improve the productivity of recombinant proteins. However, the gene editing of the baculovirus genome (approximately 130 kb) remains challenging and time-consuming. In this study, we sought to further enhance the productivity of the silkworm-BEVS by synthesizing and gene editing the BmNPV bacmid from plasmids containing fragments of BmNPV genomic DNA using a two-step Golden Gate Assembly (GGA). The BmNPV genome, divided into 19 fragments, was amplified by PCR and cloned into the plasmids. From these initial plasmids, four intermediate plasmids containing the BmNPV genomic DNA were constructed by GGA with the type IIS restriction enzyme BsaI. Subsequently, the full-length bacmid was successfully synthesized from the four intermediate plasmids by GGA with another type IIS restriction enzyme PaqCI with a high efficiency of 97.2 %. Furthermore, this methodology enabled the rapid and straightforward generation of the BmNPV bacmid lacking six genes, resulting in the suppression of degradation of recombinant proteins expressed in silkworm pupae. These results indicate that the BmNPV bacmid can be quickly and efficiently edited using only simple cloning techniques and enzymatic reactions, marking a significant advancement in the improvement of the silkworm-BEVS.

2.
Sci Rep ; 14(1): 10285, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704404

RESUMEN

High pathogenicity avian influenza (HPAI) poses a significant threat to both domestic and wild birds globally. The avian influenza virus, known for environmental contamination and subsequent oral infection in birds, necessitates careful consideration of alternative introduction routes during HPAI outbreaks. This study focuses on blowflies (genus Calliphora), in particular Calliphora nigribarbis, attracted to decaying animals and feces, which migrate to lowland areas of Japan from northern or mountainous regions in early winter, coinciding with HPAI season. Our investigation aims to delineate the role of blowflies as HPAI vectors by conducting a virus prevalence survey in a wild bird HPAI-enzootic area. In December 2022, 648 Calliphora nigribarbis were collected. Influenza virus RT-PCR testing identified 14 virus-positive samples (2.2% prevalence), with the highest occurrence observed near the crane colony (14.9%). Subtyping revealed the presence of H5N1 and HxN1 in some samples. Subsequent collections in December 2023 identified one HPAI virus-positive specimen from 608 collected flies in total, underscoring the potential involvement of blowflies in HPAI transmission. Our observations suggest C. nigribarbis may acquire the HPAI virus from deceased wild birds directly or from fecal materials from infected birds, highlighting the need to add blowflies as a target of HPAI vector control.


Asunto(s)
Aves , Gripe Aviar , Animales , Japón/epidemiología , Gripe Aviar/virología , Gripe Aviar/epidemiología , Gripe Aviar/transmisión , Aves/virología , Insectos Vectores/virología , Calliphoridae , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/genética , Heces/virología
3.
Insects ; 14(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37623394

RESUMEN

Spermatogenesis is an important process in reproduction and is conserved across species, but in Bombyx mori, it shows peculiarities, such as the maintenance of spermatogonia by apical cells and fertilization by dimorphic spermatozoa. In this study, we attempted to characterize the genes expressed in the testis of B. mori, focusing on aspects of expression patterns and gene function by transcriptome comparisons between different tissues, internal testis regions, and Drosophila melanogaster. The transcriptome analysis of 12 tissues of B. mori, including those of testis, revealed the widespread gene expression of 20,962 genes and 1705 testis-specific genes. A comparative analysis of the stem region (SR) and differentiated regions (DR) of the testis revealed 4554 and 3980 specific-enriched genes, respectively. In addition, comparisons with D. melanogaster testis transcriptome revealed homologs of 1204 SR and 389 DR specific-enriched genes that were similarly expressed in equivalent regions of Drosophila testis. Moreover, gene ontology (GO) enrichment analysis was performed for SR-specific enriched genes and DR-specific enriched genes, and the GO terms of several biological processes were enriched, confirming previous findings. This study advances our understanding of spermatogenesis in B. mori and provides an important basis for future research, filling a knowledge gap between fly and mammalian studies.

4.
Vaccine ; 41(3): 766-777, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36528444

RESUMEN

Noroviruses (NoVs) are one of the major causes of acute viral gastroenteritis in humans. Virus-like particles (VLPs) without genomes that mimic the capsid structure of viruses are promising vaccine candidates for the prevention of NoVs infection. To produce large amounts of recombinant protein, including VLPs, the silkworm-expression vector system (silkworm-BEVS) is an efficient and powerful tool. In this study, we constructed a recombinant baculovirus that expresses VP1 protein, the major structural protein of NoV GII.4. Expression analysis showed that the baculovirus-infected silkworm pupae expressed NoV VP1 protein more efficiently than silkworm larval fat bodies. We obtained about 4.9 mg of purified NoV VP1 protein from only five silkworm pupae. The purified VP1 protein was confirmed by dynamic light scattering and electron microscopy to form VLPs of approximately 40 nm in diameter. Antisera from mice immunized with the antigen blocked NoV VLPs binding to histo-blood group antigens of pig gastric mucin and also blocked NoV infection in intestinal epithelial cells derived from human induced pluripotent stem (iPS) cells. Our findings demonstrated that NoV VLP eliciting protective antibodies could be obtained in milligram quantities from a few silkworm pupae using the silkworm-BEVS.


Asunto(s)
Partículas Similares a Virus Artificiales , Bombyx , Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Animales , Humanos , Ratones , Anticuerpos , Anticuerpos Antivirales , Bombyx/química , Bombyx/metabolismo , Infecciones por Caliciviridae/prevención & control , Proteínas de la Cápside/genética , Norovirus/genética , Norovirus/inmunología , Pupa , Porcinos , Partículas Similares a Virus Artificiales/inmunología
5.
Insects ; 13(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35886807

RESUMEN

Heterochromatin protein 1 plays an important role in chromatin structure and gene expression regulation. Three HP1 genes have been found in Homo sapiens, and five HP1 genes have been reported in Drosophila melanogaster. On the other hand, in Bombyx mori, only two HP1 genes, BmHP1a and BmHP1b, were reported. In this research, we have reported the molecular and functional characterization of a novel Bombyx mori HP1 gene (BmHP1c), which had stronger transcriptional repression activity than BmHP1a. BmHP1a and BmHP1b is reported to form homo- and heterodimers, but in co-immunoprecipitation experiments, no homo- or hetero-dimer formation of BmHP1c with the other silkworm HP1s is detected. The intracellular localization of BmHP1c is not only in the nucleus but also in the cytoplasm like mammalian HP1γ. In contrast to human HP1a and b, all three BmHP1s were localized preferentially in the regions poorly stained with DAPI. Interestingly, the double knockdown of BmHP1a and b, but not BmHP1c with a or b, arrested the cell cycle at the G2/M phase. These results suggest that BmHP1c is not essential for cell progression and plays a different role than BmHP1a and BmHP1b.

6.
Insect Biochem Mol Biol ; 143: 103737, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35101566

RESUMEN

The ovary is an important organ in reproduction. In insects, especially lepidopteran insects, the oocytes and reproductive organs develop rapidly during the pupal stage. Despite their drastic morphological changes, the molecular mechanisms of ovary development are not fully understood. In this study, it is found that forkhead box transcription factor L2, member 1 (FoxL21), which is known to be involved in ovarian differentiation and maintenance in vertebrates, is required for the development of the ovary in the silkworm, Bombyx mori. FoxL21 was expressed in the ovary and ovariole during the larval and pupal stage, respectively. In silkworms in which FoxL21 was knocked out by genome editing, multiple ovarian dysfunctions, such as, abnormal egg formation, thinning of the ovariole sheaths, and defective connection of the oviductus geminus with the ovariole were observed. Finally, ovarian transplantation experiments using the knockout silkworms revealed that FoxL21 functions in the ovariole, but not in the oviductus geminus.


Asunto(s)
Bombyx , Animales , Bombyx/genética , Femenino , Oocitos , Oogénesis/genética , Ovario , Pupa
7.
Insect Biochem Mol Biol ; 138: 103636, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34478812

RESUMEN

There are several known non-molting mutations of the silkworm, Bombyx mori, including non-molting dwarf (nm-d). Larvae with this mutation hatch normally and start eating leaves, but die before the completion of the first ecdysis. Genetic analysis of the nm-d mutation would contribute to the isolation of essential genes for the larval development of lepidopteran insects. To identify the causative gene of the nm-d locus, we conducted RNA-seq based rough mapping. Using two sets of RNA-seq data, one from a pooled sample of normal larvae, and one from a pooled sample of nm-d larvae, the nm-d locus was narrowed to a 500 kb region. Among the genes located in this region, a nm-d-specific exon loss was identified in the Bombyx homolog of the ATIC (5-aminoimidazole-4-carboxamide ribonucleotide transformylase/Inosine 5'-monophosphate cyclohydrolase) (BmATIC) gene, which catalyzes the final two steps of the de novo purine biosynthetic pathway in mammals. PCR and subsequent sequencing analysis revealed that a region containing exon 9 of the BmATIC gene is deleted in the nm-d larvae. A knockout allele of the BmATIC gene (BmATICKO), that was generated using the CRISPR/Cas9 system, revealed that first instar knockout larvae died while exhibiting the dark brown larval body that is a typical feature of mutants that lack uric acid in the integument. Lethal larvae resulted from crosses between +/BmATICKO moths. The uric acid content in the whole-body of the first instar was drastically reduced in the nm-d larvae compared to normal larvae. These results indicated that the BmATIC gene is responsible for the nm-d phenotype, and that nm-d larvae have a defect in purine biosynthesis, including uric acid. We also discuss the possibility that the BmATIC mRNA is maternally transmitted to eggs. Our results indicated that RNA-seq based mapping using pooled samples is a practical method for the identification of the causative genes of lethal mutations.


Asunto(s)
Proteínas de Insectos/genética , Mariposas Nocturnas/metabolismo , Mutación , Purinas/biosíntesis , Animales , Proteínas de Insectos/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Mariposas Nocturnas/genética , Mariposas Nocturnas/crecimiento & desarrollo
8.
Mol Biotechnol ; 63(12): 1223-1234, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34304364

RESUMEN

COVID-19, caused by SARS-CoV-2, is currently spreading around the world and causing many casualties. Antibodies against such emerging infectious diseases are one of the important tools for basic viral research and the development of diagnostic and therapeutic agents. CR3022 is a monoclonal antibody against the receptor binding domain (RBD) of the spike protein (S protein) of SARS-CoV found in SARS patients, but it was also shown to have strong affinity for that of SARS-CoV-2. In this study, we produced large amounts of three formats of CR3022 antibodies (scFv, Fab and IgG) with high purity using a silkworm-baculovirus expression vector system. Furthermore, SPR measurements showed that the affinity of those silkworm-produced IgG antibodies to S protein was almost the same as that produced in mammalian expression system. These results indicate that the silkworm-baculovirus expression system is an excellent expression system for emerging infectious diseases that require urgent demand for diagnostic agents and therapeutic agents.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , Afinidad de Anticuerpos , Baculoviridae/genética , Baculoviridae/inmunología , Biotecnología , Bombyx/genética , Bombyx/inmunología , Células Cultivadas , Expresión Génica , Hemolinfa/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/biosíntesis , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos de Inmunoglobulinas/biosíntesis , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/genética , SARS-CoV-2/genética , Anticuerpos de Cadena Única/biosíntesis , Anticuerpos de Cadena Única/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
9.
Vet Res ; 52(1): 102, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34233749

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen of watery diarrhea that causes serious economic loss to the swine industry worldwide. Especially because of the high mortality rate in neonatal piglets, a vaccine with less production cost and high protective effect against PEDV is desired. The intrinsically assembled homotrimer of spike (S) protein on the PEDV viral membrane contributing to the host cell entry is a target of vaccine development. In this study, we designed trimerized PEDV S protein for efficient production in the silkworm-baculovirus expression vector system (silkworm-BEVS) and evaluated its immunogenicity in the mouse. The genetic fusion of the trimeric motif improved the expression of S protein in silkworm-BEVS. A small-scale screening of silkworm strains to further improve the S protein productivity finally achieved the yield of about 2 mg from the 10 mL larval serum. Mouse immunization study demonstrated that the trimerized S protein could elicit strong humoral immunity, including the S protein-specific IgG in the serum. These sera contained neutralizing antibodies that can protect Vero cells from PEDV infection. These results demonstrated that silkworm-BEVS provides a platform for the production of trimeric S proteins, which are promising subunit vaccines against coronaviruses such as PEDV.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Bombyx/metabolismo , Virus de la Diarrea Epidémica Porcina/genética , Seda/biosíntesis , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Bombyx/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/metabolismo , Ratones , Virus de la Diarrea Epidémica Porcina/metabolismo , Multimerización de Proteína
10.
Front Immunol ; 12: 803647, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095889

RESUMEN

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a spread of coronavirus disease 2019 (COVID-19) globally. In order to end the COVID-19 pandemic, an effective vaccine against SARS-CoV-2 must be produced at low cost and disseminated worldwide. The spike (S) protein of coronaviruses plays a pivotal role in the infection to host cells. Therefore, targeting the S protein is one of the most rational approaches in developing vaccines and therapeutic agents. In this study, we optimized the expression of secreted trimerized S protein of SARS-CoV-2 using a silkworm-baculovirus expression vector system and evaluated its immunogenicity in mice. The results showed that the S protein forming the trimeric structure was the most stable when the chicken cartilage matrix protein was used as the trimeric motif and could be purified in large amounts from the serum of silkworm larvae. The purified S protein efficiently induced antigen-specific antibodies in mouse serum without adjuvant, but its ability to induce neutralizing antibodies was low. After examining several adjuvants, the use of Alum adjuvant was the most effective in inducing strong neutralizing antibody induction. We also examined the adjuvant effect of paramylon from Euglena gracilis when administered with the S protein. Our results highlight the effectiveness and suitable construct design of the S protein produced in silkworms for the subunit vaccine development against SARS-CoV-2.


Asunto(s)
Compuestos de Alumbre/farmacología , Hidróxido de Aluminio/farmacología , Bombyx/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Línea Celular , Pollos/genética , Pollos/inmunología , Chlorocebus aethiops , Euglena gracilis/inmunología , Infecciones por Euglenozoos/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Pandemias/prevención & control , SARS-CoV-2/inmunología , Vacunación/métodos , Células Vero
11.
Biochem Biophys Res Commun ; 529(2): 257-262, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32703420

RESUMEN

In the case of a new viral disease outbreak, an immediate development of virus detection kits and vaccines is required. For COVID-19, we established a rapid production procedure for SARS-CoV-2 spike protein (S protein) by using the baculovirus-silkworm expression system. The baculovirus vector-derived S proteins were successfully secreted to silkworm serum, whereas those formed insoluble structure in the larval fat body and the pupal cells. The ectodomain of S protein with the native sequence was cleaved by the host furin-protease, resulting in less recombinant protein production. The S protein modified in furin protease-target site was efficiently secreted to silkworm serum and was purified as oligomers, which showed immunoreactivity for anti-SARS-CoV-2 S2 antibody. By using the direct transfection of recombinant bacmid to silkworms, we achieved the efficient production of SARS-CoV-2 S protein as fetal bovine serum (FBS)-free system. The resultant purified S protein would be useful tools for the development of immunodetection kits, antigen for immunization for immunoglobulin production, and vaccines.


Asunto(s)
Bombyx/citología , Bombyx/virología , Nucleopoliedrovirus/genética , Glicoproteína de la Espiga del Coronavirus/biosíntesis , Glicoproteína de la Espiga del Coronavirus/aislamiento & purificación , Animales , Bombyx/enzimología , Línea Celular , Clonación Molecular , Furina/metabolismo , Nucleopoliedrovirus/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
12.
Mol Biotechnol ; 61(8): 622-630, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31165966

RESUMEN

Type IB DNA topoisomerases are enzymes to change the topological state of DNA molecules and are essential in studying replication, transcription, and recombination of nucleic acids in vitro. DNA topoisomerase IB from Vaccinia virus (vTopIB) is a 32 kDa, type I eukaryotic topoisomerase, which relaxed positively and negatively supercoiled DNAs without Mg2+ and ATP. Although vTopIB has been effectively produced in E. coli expression system, no studies remain available to explore an alternative platform to express recombinant vTopIB (rvTopIB) in a higher eukaryote, where the one can expect post-translational modifications that affect the activity of rvTopIB. Here in this study, rvTopIB with N-terminal tags was constructed and expressed in a silkworm-baculovirus expression vector system (silkworm-BEVS). We developed a simple two consecutive chromatography purification to obtain highly pure rvTopIB. The final yield of rvTopIB obtained from a baculovirus-infected silkworm larva was 83.25 µg. We also evaluated the activity and function of rvTopIB by the DNA relaxation activity assays using a negatively supercoiled pUC19 plasmid DNA as a substrate. With carefully assessing optimized conditions for the reaction buffer, we found that divalent ions, Mg2+, Mn2+, Ca2+, as well as ATP stimulate the DNA relaxation activity by rvTopIB. The functional and active form of rvTopIB, together with the yields of the protein we obtained, suggests that silkworm-BEVS would be a potential alternative platform to produce eukaryotic topoisomerases on an industrial scale.


Asunto(s)
ADN-Topoisomerasas de Tipo I/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Virus Vaccinia , Proteínas Virales/aislamiento & purificación , Animales , Baculoviridae/genética , Bombyx/metabolismo , Bombyx/virología , ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Magnesio/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Virus Vaccinia/enzimología , Virus Vaccinia/genética , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
13.
Mol Biotechnol ; 60(12): 924-934, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30302632

RESUMEN

Human α1-antitrypsin (AAT) is the most abundant serine proteinase inhibitor (serpin) in the human plasma. Commercially available AAT for the medications of deficiency of α1-antitrypsin is mainly purified from human plasma. There is a high demand for a stable and low-cost supply of recombinant AAT (rAAT). In this study, the baculovirus expression vector system using silkworm larvae as host was employed and a large amount of highly active AAT was recovered from the silkworm serum (~ 15 mg/10 ml) with high purity. Both the enzymatic activity and stability of purified rAAT were comparable with those of commercial product. Our results provide an alternative method for mass production of the active rAAT in pharmaceutical use.


Asunto(s)
Baculoviridae/genética , Bombyx/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , Animales , Bombyx/metabolismo , Línea Celular , Clonación Molecular , Humanos , Larva/genética , Larva/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , alfa 1-Antitripsina/aislamiento & purificación , alfa 1-Antitripsina/metabolismo
14.
Appl Microbiol Biotechnol ; 102(20): 8783-8797, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30136207

RESUMEN

Mucin-type O-glycosylation is initiated by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts or PGANTs), attaching GalNAc to serine or threonine residue of a protein substrate. In the insect model from Lepidoptera, silkworm (Bombyx mori), however, O-glycosylation pathway is totally unexplored and remains largely unknown. In this study, as the first report regarding protein O-glycosylation analysis in silkworms, we verified the O-glycan profile that a common core 1 Gal (ß1-3) GalNAc disaccharide branch without terminally sialylated structure is mainly formed for a baculovirus-produced human proteoglycan 4 (PRG4) protein. Intriguingly, functional screenings in cultured silkworm BmN4 cells for nine Bmpgants reveal that Bmpgant2 is the solo functional BmPGANT for PRG4, implying that Bmpgants may have unique cell/tissue or protein substrate preferences. Furthermore, a recombinant BmPGANT2 protein was successfully purified from silkworm-BEVS and exhibited a high ability to transfer GalNAc for both peptide and protein substrates. Taken together, the present results clarified the functional BmPGANT2 in cultured silkworm cells, providing crucial fundamental insights for future studies dissecting the detailed silkworm O-glycosylation pathways and productions of glycoproteins with O-glycans.


Asunto(s)
Bombyx/enzimología , Proteínas de Insectos/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , Secuencias de Aminoácidos , Animales , Bombyx/química , Bombyx/genética , Bombyx/metabolismo , Células Cultivadas , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilación , Proteínas de Insectos/genética , N-Acetilgalactosaminiltransferasas/genética , Polisacáridos/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
15.
J Gen Virol ; 99(7): 917-926, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29851377

RESUMEN

Porcine circovirus type 2 (PCV2) is a primary causative agent of postweaningmultisystemic wasting syndrome (PMWS), which has a significant economic impact on the swine industry. The capsid protein (Cap) encoded by ORF2 of the viral genome has been used effectively as a vaccine against PCV2 infection. The Cap protein can spontaneously assemble into virus-like particles (VLPs) that are safe and highly immunogenic for vaccine applications. Several expression systems, including bacteria, yeast and insect cells, have been utilized to produce PCV2 VLPs. However, in some cases, the recombinant Cap (rCap) proteins produced in bacteria and yeast do not assemble spontaneously. In this study, we expressed rCap protein using a silkworm-baculovirus expression vector system (silkworm-BEVS) for mass production of PCV2 VLPs and established a simple three-step protocol for its purification from pupae: extraction by detergent, ammonium sulfate precipitation and anion exchange column chromatography. Size-exclusion chromatography (SEC) analysis and transmission electron microscope (TEM) observation showed that purified rCap proteins formed VLPs with a similar morphology to that of the original virus. Furthermore, the VLPs produced in silkworms were capable of inducing neutralizing antibodies against PCV2 in mice. Our results demonstrated that the silkworm system is a powerful tool for the production of PCV2 VLPs and will be useful for the development of a reliable and cost-effective PCV2 vaccine.


Asunto(s)
Bombyx/virología , Proteínas de la Cápside/aislamiento & purificación , Circovirus/efectos de los fármacos , Síndrome Multisistémico de Emaciación Posdestete Porcino/prevención & control , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Baculoviridae/genética , Baculoviridae/metabolismo , Bombyx/genética , Bombyx/crecimiento & desarrollo , Proteínas de la Cápside/administración & dosificación , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Circovirus/genética , Circovirus/inmunología , Clonación Molecular , Femenino , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos BALB C , Síndrome Multisistémico de Emaciación Posdestete Porcino/inmunología , Síndrome Multisistémico de Emaciación Posdestete Porcino/virología , Pupa/genética , Pupa/metabolismo , Pupa/virología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Porcinos , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/biosíntesis , Vacunas de Partículas Similares a Virus/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/biosíntesis , Vacunas Virales/genética
16.
Insect Biochem Mol Biol ; 89: 86-96, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28867468

RESUMEN

p62/Sequestosome-1 (p62/SQSTM1, hereafter referred to as p62) is a major adaptor that allows ubiquitinated proteins to be degraded by autophagy, and Atg8 homologs are required for p62-mediated autophagic degradation, but their relationship is still not understood in Lepidopteran insects. Here it is clearly demonstrated that the silkworm homolog of mammalian p62, Bombyx mori p62 (Bmp62), forms p62 bodies depending on its Phox and Bem1p (PB1) and ubiquitin-associated (UBA) domains. These two domains are associated with Bmp62 binding to ubiquitinated proteins to form the p62 bodies, and the UBA domain is essential for the binding, but Bmp62 still self-associates without the PB1 or UBA domain. The p62 bodies in Bombyx cells are enclosed by BmAtg9-containing membranes and degraded via autophagy. It is revealed that the interaction between the Bmp62 AIM motif and BmAtg8 is critical for the autophagic degradation of the p62 bodies. Intriguingly, we further demonstrate that lipidation of BmAtg8 is required for the Bmp62-mediated complete degradation of p62 bodies by autophagy. Our results should be useful in future studies of the autophagic mechanism in Lepidopteran insects.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia , Bombyx/metabolismo , Metabolismo de los Lípidos , Proteína Sequestosoma-1/metabolismo , Animales , Células Cultivadas , Proteínas de Insectos/metabolismo
17.
Biochem Biophys Res Commun ; 493(2): 971-978, 2017 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-28942151

RESUMEN

Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNAs that associate with PIWI subfamily proteins, which play an important role in transposon silencing in animal germ cell. The piRNAs biogenesis is divided into two major pathways: primary and secondary, and both pathways are independent of double-stranded RNA-processing enzyme Dicer, which processes the single-stranded RNA transcripts in microRNA (miRNA) and siRNA (small interfering RNA) pathway. Primary piRNAs are processed from long non-coding RNA precursors transcribed from piRNA clusters. Zucchini (Zuc), a mitochondrial phospholipase D (PLD) superfamily protein is conserved among the animals and involved in piRNA biogenesis. Recent studies showed that the Zucchini is an endoribonuclease essential for primary piRNA maturation and production of phased piRNA in secondary piRNA biogenesis of drosophila germ cell. Based on these reports, here we identified and studied the silkworm Zucchini (BmZuc) at subcellular level in ovary-derived BmN4 cell. The silkworm Zuc specifically expressed in germ-related tissues and localized on mitochondria and partially co-localized with perinuclear nuage-piRNA pathway components and nuage marker protein BmVasa. Molecular dissection analyses revealed that the conserved mitochondrial localization sequence, RGV motif, PLDc 2 domain and HKD motif are important for the BmZuc mitochondrial localization. Moreover, the knockdown analyses showed that the piRNA pathway components are independent on BmZuc for their nuage localization, whereas BmZuc depend on piRNA pathway components for the proper localization. Our data provides vital information on mitochondrial BmZuc and its relationship to "nuage" in ovary-derived BmN4 cell.


Asunto(s)
Bombyx/metabolismo , Endorribonucleasas/metabolismo , Proteínas de Insectos/metabolismo , Mitocondrias/metabolismo , ARN Interferente Pequeño/metabolismo , Secuencia de Aminoácidos , Animales , Bombyx/citología , Línea Celular , Endorribonucleasas/análisis , Femenino , Proteínas de Insectos/análisis , Ovario/citología , Ovario/metabolismo , ARN Interferente Pequeño/análisis , Alineación de Secuencia , Transducción de Señal
18.
Biochem Biophys Res Commun ; 490(2): 134-140, 2017 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-28595904

RESUMEN

PIWI-interacting RNAs (piRNAs) are a class of endogenous small non-coding RNAs, which are mostly 24-32 nucleotides in length and interact specifically with PIWI subfamily of argonaute proteins. Despite the significant research progress in germ line piRNA pathway, its role in somatic cell is not well known. In Drosophila ovarian somatic cell, maturation of primary piRNA and its loading onto Piwi occurs at perinuclear Yb body. The Armitage (Armi) and Yb proteins are the major components of Yb body and specially expressed in ovarian somatic cell. Based on the reports, here we studied the BmArmi and BmYb in Bombyx mori ovary-derived BmN4 cells expressing BmVasa. In this study, we show that BmArmi and BmYb co-localized with BmVasa at nuage. The helicase domains of BmArmi and BmYb are important for nuage localization. Moreover, RNAi of piRNA components reveal that BmArmi depend on BmAgo3 for nuage localization, and BmArmi and BmYb form cytoplasmic granules independently in the absence of BmVasa. Our results provide evidence that the BmArmi and BmYb coexist with BmVasa and play an important role in perinuclear nuage granules formation in ovary-derived BmN4 cell.


Asunto(s)
Bombyx/citología , Gránulos Citoplasmáticos/metabolismo , Proteínas de Insectos/metabolismo , Ovario/citología , ARN Interferente Pequeño/metabolismo , Animales , Células Cultivadas , Femenino
19.
Mol Biotechnol ; 59(6): 221-233, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28484957

RESUMEN

The KOD DNA polymerase from Thermococcus kodakarensis (Tkod-Pol) has been preferred for PCR due to its rapid elongation rate, extreme thermostability and outstanding fidelity. Here in this study, we utilized silkworm-baculovirus expression vector system (silkworm-BEVS) to express the recombinant Tkod-Pol (rKOD) with N-terminal (rKOD-N) or C-terminal (rKOD-C) tandem fusion tags. By using BEVS, we produced functional rKODs with satisfactory yields, about 1.1 mg/larva for rKOD-N and 0.25 mg/larva for rKOD-C, respectively. Interestingly, we found that rKOD-C shows higher thermostability at 95 °C than that of rKOD-N, while that rKOD-N is significantly unstable after exposing to long period of heat-shock. We also assessed the polymerase activity as well as the fidelity of purified rKODs under various conditions. Compared with commercially available rKOD, which is expressed in E. coli expression system, rKOD-C exhibited almost the same PCR performance as the commercial rKOD did, while rKOD-N did lower performance. Taken together, our results suggested that silkworm-BEVS can be used to express and purify efficient rKOD in a commercial way.


Asunto(s)
Bombyx/genética , Vectores Genéticos/genética , Proteínas Recombinantes/genética , Thermococcus/genética , Animales
20.
Mol Biotechnol ; 59(4-5): 151-158, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28342150

RESUMEN

Baculovirus expression vector system (BEVS) is widely known as a mass-production tool to produce functional recombinant glycoproteins except that it may not be always suitable for medical practice due to the differences in the structure of N-linked glycans between insects and mammalian. Currently, various approaches have been reported to alter N-linked glycan structures of glycoproteins derived from insects into terminally sialylated complex-type N-glycans. In the light of those studies, we also proposed in vitro maturation of N-glycan with mass-produced and purified glycosyltransferases by silkworm-BEVS. ß-1,4-Galactosyltransferase 1 (ß4GalT1) is known as one of type II transmembrane enzymes that transfer galactose in a ß-1, 4 linkage to accepter sugars, and a key enzyme for further sialylation of N-glycans. In this study, we developed a large-scale production of recombinant human ß4GalT1 (rhß4GalT1) with N- or C-terminal tags in silkworm-BEVS. We demonstrated that rhß4GalT1 is N-glycosylated and without mucin-type glycosylation. Interestingly, we found that purified rhß4GalT1 from silkworm serum presented higher galactosyltransferase activity than that expressed from cultured mammalian cells. We also validated the UDP-galactose transferase activity of produced rhß4GalT1 proteins by using protein subtracts from silkworm silk gland. Taken together, rhß4GalT1 from silkworms can become a valuable tool for producing high-quality recombinant glycoproteins with mammalian-like N-glycans.


Asunto(s)
Baculoviridae/genética , Bombyx/metabolismo , Galactosiltransferasas/biosíntesis , Galactosiltransferasas/química , Transfección/métodos , Animales , Sitios de Unión , Bombyx/genética , Clonación Molecular/métodos , Activación Enzimática , Estabilidad de Enzimas , Galactosiltransferasas/ultraestructura , Humanos , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA