Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zootaxa ; 4178(1): 145-150, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27811734

RESUMEN

Specimens of a deep-sea anemone were observed in photographs and video footage taken with the Remotely Operated Vehicle JASON (WHOI Deep Submergence Laboratory) in the Gulf of California, Mexico, in May 2008. Comparison of our material with photographs and description of this species available in literature indicate that the sea anemones filmed during the JASON survey are most likely to represent Phelliactis callicyclus Riemann-Zurneck, 1973. This species has previously been reported from a locality in the Gulf of California near the present record. During the JASON survey, 28 specimens of P. callicyclus were spotted in 27 locations during six dives. The specimens occurred on angular rock outcrops along the escarpments of the transform faults of the Gulf of California, between depths of 993-2543 m and at temperatures ranging from 2.3 to 4.5°C. Based on these new records, Phelliactis callicyclus appears to be widely spread in the Gulf of California.


Asunto(s)
Anémonas de Mar/clasificación , Distribución Animal , Animales , México , Océano Pacífico , Anémonas de Mar/anatomía & histología
2.
Ecol Appl ; 17(5): 1379-87, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17708215

RESUMEN

In topographically complex terrains, downslope movement of soil organic carbon (OC) can influence local carbon balance. The primary purpose of the present analysis is to compare the magnitude of OC displacement by erosion with ecosystem metabolism in such a complex terrain. Does erosion matter in this ecosystem carbon balance? We have used the Revised Universal Soil Loss Equation (RUSLE) erosion model to estimate lateral fluxes of OC in a watershed in northwestern Mexico. The watershed (4900 km2) has an average slope of 10 degrees +/- 9 degrees (mean +/- SD); 45% is >10 degrees, and 3% is >30 degrees. Land cover is primarily shrublands (69%) and agricultural lands (22%). Estimated bulk soil erosion averages 1350 Mg x km(-2) x yr(-1). We estimate that there is insignificant erosion on slopes < 2 degrees and that 20% of the area can be considered depositional. Estimated OC erosion rates are 10 Mg x km(-2) x yr(-1) for areas steeper than 2 degrees. Over the entire area, erosion is approximately 50% higher on shrublands than on agricultural lands, but within slope classes, erosion rates are more rapid on agricultural areas. For the whole system, estimated OC erosion is approximately 2% of net primary production (NPP), increasing in high-slope areas to approximately 3% of NPP. Deposition of eroded OC in low-slope areas is approximately 10% of low-slope NPP. Soil OC movement from erosional slopes to alluvial fans alters the mosaic of OC metabolism and storage across the landscape.


Asunto(s)
Agricultura , Carbono/análisis , Conservación de los Recursos Naturales , Suelo , Abastecimiento de Agua , Altitud , Carbono/química , Carbono/metabolismo , Clima , Geografía , Mar Mediterráneo , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...