Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Dev Biol ; 504: 12-24, 2023 12.
Article En | MEDLINE | ID: mdl-37696353

The Estrogen Related Receptor (ERR) nuclear hormone receptor genes have a wide diversity of roles in vertebrate development. In embryos, ERR genes are expressed in several tissues, including the central and peripheral nervous systems. Here we seek to establish the evolutionary history of chordate ERR genes, their expression and their regulation. We examine ERR expression in mollusc, amphioxus and sea squirt embryos, finding the single ERR orthologue is expressed in the nervous system in all three, with muscle expression also found in the two chordates. We show that most jawed vertebrates and lampreys have four ERR paralogues, and that vertebrate ERR genes were ancestrally linked to Estrogen Receptor genes. One of the lamprey paralogues shares conserved expression domains with jawed vertebrate ERRγ in the embryonic vestibuloacoustic ganglion, eye, brain and spinal cord. Hypothesising that conserved expression derives from conserved regulation, we identify a suite of pan-vertebrate conserved non-coding sequences in ERR introns. We use transgenesis in lamprey and chicken embryos to show that these sequences are regulatory and drive reporter gene expression in the nervous system. Our data suggest an ancient association between ERR and the nervous system, including expression in cells associated with photosensation and mechanosensation. This includes the origin in the vertebrate common ancestor of a suite of regulatory elements in the 3' introns that drove nervous system expression and have been conserved from this point onwards.


Chordata , Chick Embryo , Animals , Chordata/genetics , Evolution, Molecular , Vertebrates , Conserved Sequence , Lampreys/genetics , Lampreys/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Gene Expression Regulation, Developmental/genetics , Phylogeny
2.
Proc Natl Acad Sci U S A ; 120(39): e2300587120, 2023 09 26.
Article En | MEDLINE | ID: mdl-37725647

Oomycetes were recently discovered as natural pathogens of Caenorhabditis elegans, and pathogen recognition alone was shown to be sufficient to activate a protective transcriptional program characterized by the expression of multiple chitinase-like (chil) genes. However, the molecular mechanisms underlying oomycete recognition in animals remain fully unknown. We performed here a forward genetic screen to uncover regulators of chil gene induction and found several independent loss-of-function alleles of old-1 and flor-1, which encode receptor tyrosine kinases belonging to the C. elegans-specific KIN-16 family. We report that OLD-1 and FLOR-1 are both necessary for mounting the immune response and act in the epidermis. FLOR-1 is a pseudokinase that acts downstream of the active kinase OLD-1 and regulates OLD-1 levels at the plasma membrane. Interestingly, the old-1 locus is adjacent to the chil genes in the C. elegans genome, thereby revealing a genetic cluster important for oomycete resistance. Furthermore, we demonstrate that old-1 expression at the anterior side of the epidermis is regulated by the VAB-3/PAX6 transcription factor, well known for its role in visual system development in other animals. Taken together, our study reveals both conserved and species-specific factors shaping the activation and spatial characteristics of the immune response to oomycete recognition.


Caenorhabditis elegans , Chitinases , Animals , Caenorhabditis elegans/genetics , Receptor Protein-Tyrosine Kinases , Cell Membrane , Alleles
3.
J Biophotonics ; 14(12): e202100144, 2021 12.
Article En | MEDLINE | ID: mdl-34390220

We present a robust, low-cost single-shot implementation of differential phase microscopy utilising a polarisation-sensitive camera to simultaneously acquire four images from which phase contrast images can be calculated. This polarisation-resolved differential phase contrast (pDPC) microscopy technique can be easily integrated with fluorescence microscopy.


Microscopy , Microscopy, Phase-Contrast
4.
Nat Commun ; 12(1): 3263, 2021 05 31.
Article En | MEDLINE | ID: mdl-34059684

A fundamental question in medical genetics is how the genetic background modifies the phenotypic outcome of mutations. We address this question by focusing on the seam cells, which display stem cell properties in the epidermis of Caenorhabditis elegans. We demonstrate that a putative null mutation in the GATA transcription factor egl-18, which is involved in seam cell fate maintenance, is more tolerated in the CB4856 isolate from Hawaii than the lab reference strain N2 from Bristol. We identify multiple quantitative trait loci (QTLs) underlying the difference in phenotype expressivity between the two isolates. These QTLs reveal cryptic genetic variation that reinforces seam cell fate through potentiating Wnt signalling. Within one QTL region, a single amino acid deletion in the heat shock protein HSP-110 in CB4856 is sufficient to modify Wnt signalling and seam cell development, highlighting that natural variation in conserved heat shock proteins can shape phenotype expressivity.


Caenorhabditis elegans Proteins/genetics , Cell Differentiation/genetics , Epidermal Cells/physiology , GATA Transcription Factors/genetics , HSP110 Heat-Shock Proteins/genetics , Stem Cells/physiology , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , GATA Transcription Factors/metabolism , Genetic Association Studies , Genetic Techniques , Genetic Variation , HSP110 Heat-Shock Proteins/metabolism , Hermaphroditic Organisms , Male , Mutation , Quantitative Trait Loci , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Wnt Signaling Pathway/genetics
5.
Front Cell Dev Biol ; 9: 640856, 2021.
Article En | MEDLINE | ID: mdl-34084768

Individual cells and organisms experience perturbations from internal and external sources, yet manage to buffer these to produce consistent phenotypes, a property known as robustness. While phenotypic robustness has often been examined in unicellular organisms, it has not been sufficiently studied in multicellular animals. Here, we investigate phenotypic robustness in Caenorhabditis elegans seam cells. Seam cells are stem cell-like epithelial cells along the lateral edges of the animal, which go through asymmetric and symmetric divisions contributing cells to the hypodermis and neurons, while replenishing the stem cell reservoir. The terminal number of seam cells is almost invariant in the wild-type population, allowing the investigation of how developmental precision is achieved. We report here that a loss-of-function mutation in the highly conserved N-acetyltransferase nath-10/NAT10 increases seam cell number variance in the isogenic population. RNA-seq analysis revealed increased levels of mRNA transcript variability in nath-10 mutant populations, which may have an impact on the phenotypic variability observed. Furthermore, we found disruption of Wnt signaling upon perturbing nath-10 function, as evidenced by changes in POP-1/TCF nuclear distribution and ectopic activation of its GATA transcription factor target egl-18. These results highlight that NATH-10/NAT-10 can influence phenotypic variability partly through modulation of the Wnt signaling pathway.

6.
Sci Rep ; 11(1): 9787, 2021 05 07.
Article En | MEDLINE | ID: mdl-33963222

Developmental patterning in Caenorhabditis elegans is known to proceed in a highly stereotypical manner, which raises the question of how developmental robustness is achieved despite the inevitable stochastic noise. We focus here on a population of epidermal cells, the seam cells, which show stem cell-like behaviour and divide symmetrically and asymmetrically over post-embryonic development to generate epidermal and neuronal tissues. We have conducted a mutagenesis screen to identify mutants that introduce phenotypic variability in the normally invariant seam cell population. We report here that a null mutation in the fusogen eff-1 increases seam cell number variability. Using time-lapse microscopy and single molecule fluorescence hybridisation, we find that seam cell division and differentiation patterns are mostly unperturbed in eff-1 mutants, indicating that cell fusion is uncoupled from the cell differentiation programme. Nevertheless, seam cell losses due to the inappropriate differentiation of both daughter cells following division, as well as seam cell gains through symmetric divisions towards the seam cell fate were observed at low frequency. We show that these stochastic errors likely arise through accumulation of defects interrupting the continuity of the seam and changing seam cell shape, highlighting the role of tissue homeostasis in suppressing phenotypic variability during development.


Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Epidermis/metabolism , Membrane Glycoproteins/metabolism , Stem Cells/metabolism , Animals , Cell Fusion , Cell Shape , Epidermal Cells/metabolism
7.
Genetics ; 214(4): 927-939, 2020 04.
Article En | MEDLINE | ID: mdl-31988193

Populations often display consistent developmental phenotypes across individuals despite inevitable biological stochasticity. Nevertheless, developmental robustness has limits, and systems can fail upon change in the environment or the genetic background. We use here the seam cells, a population of epidermal stem cells in Caenorhabditis elegans, to study the influence of temperature change and genetic variation on cell fate. Seam cell development has mostly been studied so far in the laboratory reference strain (N2), grown at 20° temperature. We demonstrate that an increase in culture temperature to 25° introduces variability in the wild-type seam cell lineage, with a proportion of animals showing an increase in seam cell number. We map this increase to lineage-specific symmetrization events of normally asymmetric cell divisions at the fourth larval stage, leading to the retention of seam cell fate in both daughter cells. Using genetics and single-molecule imaging, we demonstrate that this symmetrization occurs via changes in the Wnt asymmetry pathway, leading to aberrant Wnt target activation in anterior cell daughters. We find that intrinsic differences in the Wnt asymmetry pathway already exist between seam cells at 20° and this may sensitize cells toward a cell fate switch at increased temperature. Finally, we demonstrate that wild isolates of C. elegans display variation in seam cell sensitivity to increased culture temperature, although their average seam cell number is comparable at 20°. Our results highlight how temperature can modulate cell fate decisions in an invertebrate model of stem cell patterning.


Asymmetric Cell Division , Cell Lineage , Genetic Variation , Wnt Signaling Pathway , Animals , Caenorhabditis elegans , Epithelial Cells/cytology , Epithelial Cells/metabolism , Heat-Shock Response , Stem Cells/cytology , Stem Cells/metabolism
8.
Development ; 146(24)2019 12 16.
Article En | MEDLINE | ID: mdl-31806661

During early embryogenesis, the ectoderm is rapidly subdivided into neural, neural crest and sensory progenitors. How the onset of lineage determinants and the loss of pluripotency markers are temporally and spatially coordinated in vivo is still debated. Here, we identify a crucial role for the transcription factor PRDM1 in the orderly transition from epiblast to defined neural lineages in chick. PRDM1 is initially expressed broadly in the entire epiblast, but becomes gradually restricted as cell fates are specified. We find that PRDM1 is required for the loss of some pluripotency markers and the onset of neural, neural crest and sensory progenitor specifier genes. PRDM1 directly activates their expression by binding to their promoter regions and recruiting the histone demethylase Kdm4a to remove repressive histone marks. However, once neural lineage determinants become expressed, they in turn repress PRDM1, whereas prolonged PRDM1 expression inhibits neural, neural crest and sensory progenitor genes, suggesting that its downregulation is necessary for cells to maintain their identity. Therefore, PRDM1 plays multiple roles during ectodermal cell fate allocation.


Cell Differentiation/genetics , Nervous System/embryology , Neural Crest/embryology , Neural Stem Cells/physiology , Positive Regulatory Domain I-Binding Factor 1/physiology , Sensory Receptor Cells/physiology , Animals , Animals, Genetically Modified , Chick Embryo , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Nervous System/cytology , Neural Crest/cytology , Neurogenesis/genetics , Sensory Receptor Cells/cytology
9.
Proc Natl Acad Sci U S A ; 115(2): 355-360, 2018 01 09.
Article En | MEDLINE | ID: mdl-29259119

Around the time of gastrulation in higher vertebrate embryos, inductive interactions direct cells to form central nervous system (neural plate) or sensory placodes. Grafts of different tissues into the periphery of a chicken embryo elicit different responses: Hensen's node induces a neural plate whereas the head mesoderm induces placodes. How different are these processes? Transcriptome analysis in time course reveals that both processes start by induction of a common set of genes, which later diverge. These genes are remarkably similar to those induced by an extraembryonic tissue, the hypoblast, and are normally expressed in the pregastrulation stage epiblast. Explants of this epiblast grown in the absence of further signals develop as neural plate border derivatives and eventually express lens markers. We designate this state as "preborder"; its transcriptome resembles embryonic stem cells. Finally, using sequential transplantation experiments, we show that the node, head mesoderm, and hypoblast are interchangeable to begin any of these inductions while the final outcome depends on the tissue emitting the later signals.


Central Nervous System/metabolism , Embryonic Induction , Embryonic Stem Cells/metabolism , Gastrula/metabolism , Mesoderm/metabolism , Neural Plate/metabolism , Animals , Central Nervous System/embryology , Chick Embryo , Gastrula/embryology , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , In Situ Hybridization , Mesoderm/embryology , Neural Plate/embryology
10.
Development ; 144(15): 2810-2823, 2017 08 01.
Article En | MEDLINE | ID: mdl-28684624

In vertebrates, cranial placodes contribute to all sense organs and sensory ganglia and arise from a common pool of Six1/Eya2+ progenitors. Here we dissect the events that specify ectodermal cells as placode progenitors using newly identified genes upstream of the Six/Eya complex. We show in chick that two different tissues, namely the lateral head mesoderm and the prechordal mesendoderm, gradually induce placode progenitors: cells pass through successive transcriptional states, each identified by distinct factors and controlled by different signals. Both tissues initiate a common transcriptional state but over time impart regional character, with the acquisition of anterior identity dependent on Shh signalling. Using a network inference approach we predict the regulatory relationships among newly identified transcription factors and verify predicted links in knockdown experiments. Based on this analysis we propose a new model for placode progenitor induction, in which the initial induction of a generic transcriptional state precedes regional divergence.


Signal Transduction/physiology , Vertebrates/embryology , Animals , Cell Communication/genetics , Cell Communication/physiology , Chick Embryo , Chickens , Ectoderm/cytology , Ectoderm/embryology , Ectoderm/metabolism , Electroporation , Ganglia, Sensory/cytology , Ganglia, Sensory/embryology , Ganglia, Sensory/metabolism , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , In Situ Hybridization , Oligonucleotide Array Sequence Analysis , Quail , Sense Organs/cytology , Sense Organs/embryology , Sense Organs/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Vertebrates/metabolism
11.
Proc Natl Acad Sci U S A ; 109(36): 14669-74, 2012 Sep 04.
Article En | MEDLINE | ID: mdl-22912401

Eye movements depend on correct patterns of connectivity between cranial motor axons and the extraocular muscles. Despite the clinical importance of the ocular motor system, little is known of the molecular mechanisms underlying its development. We have recently shown that mutations in the Chimaerin-1 gene encoding the signaling protein α2-chimaerin (α2-chn) perturb axon guidance in the ocular motor system and lead to the human eye movement disorder, Duane retraction syndrome (DRS). The axon guidance cues that lie upstream of α2-chn are unknown; here we identify candidates to be the Semaphorins (Sema) 3A and 3C, acting via the PlexinA receptors. Sema3A/C are expressed in and around the developing extraocular muscles and cause growth cone collapse of oculomotor neurons in vitro. Furthermore, RNAi knockdown of α2-chn or PlexinAs in oculomotor neurons abrogates Sema3A/C-dependent growth cone collapse. In vivo knockdown of endogenous PlexinAs or α2-chn function results in stereotypical oculomotor axon guidance defects, which are reminiscent of DRS, whereas expression of α2-chn gain-of-function constructs can rescue PlexinA loss of function. These data suggest that α2-chn mediates Sema3-PlexinA repellent signaling. We further show that α2-chn is required for oculomotor neurons to respond to CXCL12 and hepatocyte growth factor (HGF), which are growth promoting and chemoattractant during oculomotor axon guidance. α2-chn is therefore a potential integrator of different types of guidance information to orchestrate ocular motor pathfinding. DRS phenotypes can result from incorrect regulation of this signaling pathway.


Chimerin 1/metabolism , Duane Retraction Syndrome/physiopathology , Growth Cones/physiology , Oculomotor Muscles/embryology , Semaphorin-3A/metabolism , Signal Transduction/physiology , Animals , Chemokine CXCL12/metabolism , Chick Embryo , Chimerin 1/genetics , Gene Knockdown Techniques , Hepatocyte Growth Factor/metabolism , Immunohistochemistry , In Situ Hybridization , Oculomotor Muscles/innervation , RNA Interference , Receptors, Cell Surface/genetics , Signal Transduction/genetics
...