Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 141
2.
Article En | MEDLINE | ID: mdl-38589640

The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.

3.
Sci Adv ; 10(13): eadj9559, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38552026

Pulmonary fibrosis is an often fatal lung disease. Immune cells such as macrophages were shown to accumulate in the fibrotic lung, but their contribution to the fibrosis development is unclear. To recapitulate the involvement of macrophages in the development of pulmonary fibrosis, we developed a fibrotic microtissue model with cocultured human macrophages and fibroblasts. We show that profibrotic macrophages seeded on topographically controlled stromal tissues became mechanically activated. The resulting co-alignment of macrophages, collagen fibers, and fibroblasts promoted widespread fibrogenesis in micro-engineered lung tissues. Anti-fibrosis treatment using pirfenidone disrupts the polarization and mechanical activation of profibrotic macrophages, leading to fibrosis inhibition. Pirfenidone inhibits the mechanical activation of macrophages by suppressing integrin αMß2 and Rho-associated kinase 2. These results demonstrate a potential pulmonary fibrogenesis mechanism at the tissue level contributed by macrophages. The cocultured microtissue model is a powerful tool to study the immune-stromal cell interactions and the anti-fibrosis drug mechanism.


Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/etiology , Lung/pathology , Fibrosis , Macrophages , Coculture Techniques
4.
Cells ; 13(4)2024 Feb 10.
Article En | MEDLINE | ID: mdl-38391940

Cardiac fibrosis is a key aspect of heart failure, leading to reduced ventricular compliance and impaired electrical conduction in the myocardium. Various pathophysiologic conditions can lead to fibrosis in the left ventricle (LV) and/or right ventricle (RV). Despite growing evidence to support the transcriptomic heterogeneity of cardiac fibroblasts (CFs) in healthy and diseased states, there have been no direct comparisons of CFs in the LV and RV. Given the distinct natures of the ventricles, we hypothesized that LV- and RV-derived CFs would display baseline transcriptomic differences that influence their proliferation and differentiation following injury. Bulk RNA sequencing of CFs isolated from healthy murine left and right ventricles indicated that LV-derived CFs may be further along the myofibroblast transdifferentiation trajectory than cells isolated from the RV. Single-cell RNA-sequencing analysis of the two populations confirmed that Postn+ CFs were more enriched in the LV, whereas Igfbp3+ CFs were enriched in the RV at baseline. Notably, following pressure overload injury, the LV developed a larger subpopulation of pro-fibrotic Thbs4+/Cthrc1+ injury-induced CFs, while the RV showed a unique expansion of two less-well-characterized CF subpopulations (Igfbp3+ and Inmt+). These findings demonstrate that LV- and RV-derived CFs display baseline subpopulation differences that may dictate their diverging responses to pressure overload injury. Further study of these subpopulations will elucidate their role in the development of fibrosis and inform on whether LV and RV fibrosis require distinct treatments.


Heart Ventricles , Heart , Mice , Animals , Heart Ventricles/pathology , Gene Expression Profiling , Fibroblasts , Fibrosis
5.
Biomed Pharmacother ; 171: 116119, 2024 Feb.
Article En | MEDLINE | ID: mdl-38181714

AIMS: Adiponectin has been shown to mediate cardioprotective effects and levels are typically reduced in patients with cardiometabolic disease. Hence, there has been intense interest in developing adiponectin-based therapeutics. The aim of this translational research study was to examine the functional significance of targeting adiponectin signaling with the adiponectin receptor agonist ALY688 in a mouse model of heart failure with reduced ejection fraction (HFrEF), and the mechanisms of cardiac remodeling leading to cardioprotection. METHODS AND RESULTS: Wild-type mice were subjected to transverse aortic constriction (TAC) to induce left ventricular pressure overload (PO), or sham surgery, with or without daily subcutaneous ALY688-SR administration. Temporal analysis of cardiac function was conducted via weekly echocardiography for 5 weeks and we observed that ALY688 attenuated the PO-induced dysfunction. ALY688 also reduced cardiac hypertrophic remodeling, assessed via LV mass, heart weight to body weight ratio, cardiomyocyte cross sectional area, ANP and BNP levels. ALY688 also attenuated PO-induced changes in myosin light and heavy chain expression. Collagen content and myofibroblast profile indicated that fibrosis was attenuated by ALY688 with TIMP1 and scleraxis/periostin identified as potential mechanistic contributors. ALY688 reduced PO-induced elevation in circulating cytokines including IL-5, IL-13 and IL-17, and the chemoattractants MCP-1, MIP-1ß, MIP-1alpha and MIP-3α. Assessment of myocardial transcript levels indicated that ALY688 suppressed PO-induced elevations in IL-6, TLR-4 and IL-1ß, collectively indicating anti-inflammatory effects. Targeted metabolomic profiling indicated that ALY688 increased fatty acid mobilization and oxidation, increased betaine and putrescine plus decreased sphingomyelin and lysophospholipids, a profile indicative of improved insulin sensitivity. CONCLUSION: These results indicate that the adiponectin mimetic peptide ALY688 reduced PO-induced fibrosis, hypertrophy, inflammation and metabolic dysfunction and represents a promising therapeutic approach for treating HFrEF in a clinical setting.


Heart Failure , Humans , Mice , Animals , Heart Failure/metabolism , Adiponectin/metabolism , Receptors, Adiponectin/metabolism , Stroke Volume , Myocytes, Cardiac , Fibrosis , Ventricular Remodeling , Mice, Inbred C57BL
6.
Adv Mater ; 36(2): e2305964, 2024 Jan.
Article En | MEDLINE | ID: mdl-37671420

The fibrous network of an extracellular matrix (ECM) possesses mechanical properties that convey critical biological functions in cell mechanotransduction. Engineered fibrous hydrogels show promise in emulating key aspects of ECM structure and functions. However, varying hydrogel mechanics without changing its architecture remains a challenge. A composite fibrous hydrogel is developed to vary gel stiffness without affecting its structure by controlling intrafibrillar crosslinking. The hydrogel is formed from aldehyde-modified cellulose nanocrystals and gelatin methacryloyl that provide the capability of intrafibrillar photocrosslinking. By varying the degree of gelatin functionalization with methacryloyl groups and/or photoirradiation time, the hydrogel's elastic modulus is changed by more than an order of magnitude, while preserving the same fiber diameter and pore size. The hydrogel is used to seed primary mouse lung fibroblasts and test the role of ECM stiffness on fibroblast contraction and activation. Increasing hydrogel stiffness by stronger intrafibrillar crosslinking results in enhanced fibroblast activation and increased fibroblast contraction force, yet at a reduced contraction speed. The developed approach enables the fabrication of biomimetic hydrogels with decoupled structural and mechanical properties, facilitating studies of ECM mechanics on tissue development and disease progression.


Hydrogels , Mechanotransduction, Cellular , Animals , Mice , Hydrogels/chemistry , Extracellular Matrix , Fibroblasts , Elastic Modulus
7.
SLAS Discov ; 29(3): 100138, 2024 Apr.
Article En | MEDLINE | ID: mdl-38158044

The pivotal role of myofibroblast contractility in the pathophysiology of fibrosis is widely recognized, yet HTS approaches are not available to quantify this critically important function in drug discovery. We developed, validated, and scaled-up a HTS platform that quantifies contractile function of primary human lung myofibroblasts upon treatment with pro-fibrotic TGF-ß1. With the fully automated assay we screened a library of 40,000 novel small molecules in under 80 h of total assay run-time. We identified 42 hit compounds that inhibited the TGF-ß1-induced contractile phenotype of myofibroblasts, and enriched for 19 that specifically target myofibroblasts but not phenotypically related smooth muscle cells. Selected hits were validated in an ex vivo lung tissue models for their inhibitory effects on fibrotic gene upregulation by TGF-ß1. Our results demonstrate that integrating a functional contraction test into the drug screening process is key to identify compounds with targeted and diverse activity as potential anti-fibrotic agents.


Drug Discovery , Fibrosis , High-Throughput Screening Assays , Myofibroblasts , Phenotype , Transforming Growth Factor beta1 , Humans , High-Throughput Screening Assays/methods , Drug Discovery/methods , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myofibroblasts/pathology , Fibrosis/drug therapy , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Small Molecule Libraries/pharmacology , Antifibrotic Agents/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism , Cells, Cultured , Muscle Contraction/drug effects , Drug Evaluation, Preclinical/methods
9.
Pharmacol Ther ; 250: 108528, 2023 10.
Article En | MEDLINE | ID: mdl-37708995

The ability of cells to sense and respond to changes in mechanical environment is vital in conditions of organ injury when the architecture of normal tissues is disturbed or lost. Among the various cellular players that respond to injury, fibroblasts take center stage in re-establishing tissue integrity by secreting and organizing extracellular matrix into stabilizing scar tissue. Activation, activity, survival, and death of scar-forming fibroblasts are tightly controlled by mechanical environment and proper mechanotransduction ensures that fibroblast activities cease after completion of the tissue repair process. Conversely, dysregulated mechanotransduction often results in fibroblast over-activation or persistence beyond the state of normal repair. The resulting pathological accumulation of extracellular matrix is called fibrosis, a condition that has been associated with over 40% of all deaths in the industrialized countries. Consequently, elements in fibroblast mechanotransduction are scrutinized for their suitability as anti-fibrotic therapeutic targets. We review the current knowledge on mechanically relevant factors in the fibroblast extracellular environment, cell-matrix and cell-cell adhesion structures, stretch-activated membrane channels, stress-regulated cytoskeletal structures, and co-transcription factors. We critically discuss the targetability of these elements in therapeutic approaches and their progress in pre-clinical and/or clinical trials to treat organ fibrosis.


Cicatrix , Mechanotransduction, Cellular , Humans , Mechanotransduction, Cellular/physiology , Fibroblasts , Fibrosis , Cell Adhesion , Extracellular Matrix/physiology
10.
Sci Adv ; 9(31): eadf1130, 2023 08 04.
Article En | MEDLINE | ID: mdl-37540756

In osteoarthritis (OA), a disease characterized by progressive articular cartilage degradation and calcification, the articular chondrocyte phenotype changes and this correlates with actin cytoskeleton alterations suggesting that it regulates gene expression essential for proper phenotype. This study reports that OA is associated with the loss of adseverin, an actin capping and severing protein. Adseverin deletion (Adseverin-/-) in mice compromised articular chondrocyte function, by reducing F-actin and aggrecan expression and increasing apoptosis, Indian hedgehog, Runx2, MMP13, and collagen type X expression, and cell proliferation. This led to stiffer cartilage and decreased hyaline and increased calcified cartilage thickness. Together, these changes predisposed the articular cartilage to enhanced OA severity in Adseverin-/- mice who underwent surgical induction of OA. Adseverin-/- chondrocyte RNA sequencing and in vitro studies together suggests that adseverin modulates cell viability and prevents mineralization. Thus, adseverin maintains articular chondrocyte phenotype and cartilage tissue homeostasis by preventing progression to hypertrophic differentiation in vivo. Adseverin may be chondroprotective and a potential therapeutic target.


Cartilage, Articular , Osteoarthritis , Mice , Animals , Microfilament Proteins/metabolism , Chondrocytes , Hedgehog Proteins/metabolism , Osteoarthritis/genetics , Cell Differentiation , Cartilage, Articular/metabolism , Actins/metabolism
11.
bioRxiv ; 2023 Jul 21.
Article En | MEDLINE | ID: mdl-37503121

Pulmonary fibrosis, as seen in idiopathic pulmonary fibrosis (IPF) and COVID-induced pulmonary fibrosis, is an often-fatal lung disease. Increased numbers of immune cells such as macrophages were shown to accumulate in the fibrotic lung, but it is unclear how they contribute to the development of fibrosis. To recapitulate the macrophage mechanical activation in the fibrotic lung tissue microenvironment, we developed a fibrotic microtissue model with cocultured human macrophages and fibroblasts. We show that profibrotic macrophages seeded on topographically controlled stromal tissue constructs become mechanically activated. The resulting co-alignment of macrophages, collagen fibers and fibroblasts promote widespread fibrogenesis in micro-engineered lung tissues. Anti-fibrosis treatment using pirfenidone disrupts the polarization and mechanical activation of profibrotic macrophages, leading to fibrosis inhibition. Pirfenidone inhibits the mechanical activation of macrophages by suppressing integrin αMß2 (CD11b/CD18) and Rho-associated kinase 2, which is a previously unknown mechanism of action of the drug. Together, these results demonstrate a potential pulmonary fibrogenesis mechanism at the tissue level contributed by mechanically activated macrophages. We propose the coculture, force-sensing microtissue model as a powerful tool to study the complex immune-stromal cell interactions and the mechanism of action of anti-fibrosis drugs.

12.
Proc Natl Acad Sci U S A ; 120(22): e2219392120, 2023 05 30.
Article En | MEDLINE | ID: mdl-37216534

Lantibiotics are ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are produced by bacteria. Interest in this group of natural products is increasing rapidly as alternatives to conventional antibiotics. Some human microbiome-derived commensals produce lantibiotics to impair pathogens' colonization and promote healthy microbiomes. Streptococcus salivarius is one of the first commensal microbes to colonize the human oral cavity and gastrointestinal tract, and its biosynthesis of RiPPs, called salivaricins, has been shown to inhibit the growth of oral pathogens. Herein, we report on a phosphorylated class of three related RiPPs, collectively referred to as salivaricin 10, that exhibit proimmune activity and targeted antimicrobial properties against known oral pathogens and multispecies biofilms. Strikingly, the immunomodulatory activities observed include upregulation of neutrophil-mediated phagocytosis, promotion of antiinflammatory M2 macrophage polarization, and stimulation of neutrophil chemotaxis-these activities have been attributed to the phosphorylation site identified on the N-terminal region of the peptides. Salivaricin 10 peptides were determined to be produced by S. salivarius strains found in healthy human subjects, and their dual bactericidal/antibiofilm and immunoregulatory activity may provide new means to effectively target infectious pathogens while maintaining important oral microbiota.


Bacteriocins , Humans , Bacteriocins/pharmacology , Bacteriocins/chemistry , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Peptides
13.
Article En | MEDLINE | ID: mdl-36123034

Myofibroblasts are the construction workers of wound healing and repair damaged tissues by producing and organizing collagen/extracellular matrix (ECM) into scar tissue. Scar tissue effectively and quickly restores the mechanical integrity of lost tissue architecture but comes at the price of lost tissue functionality. Fibrotic diseases caused by excessive or persistent myofibroblast activity can lead to organ failure. This review defines myofibroblast terminology, phenotypic characteristics, and functions. We will focus on the central role of the cell, ECM, and tissue mechanics in regulating tissue repair by controlling myofibroblast action. Additionally, we will discuss how therapies based on mechanical intervention potentially ameliorate wound healing outcomes. Although myofibroblast physiology and pathology affect all organs, we will emphasize cutaneous wound healing and hypertrophic scarring as paradigms for normal tissue repair versus fibrosis. A central message of this review is that myofibroblasts can be activated from multiple cell sources, varying with local environment and type of injury, to either restore tissue integrity and organ function or create an inappropriate mechanical environment.


Cicatrix , Myofibroblasts , Humans , Myofibroblasts/metabolism , Myofibroblasts/pathology , Cicatrix/metabolism , Cicatrix/pathology , Wound Healing/physiology , Collagen/metabolism , Fibrosis , Extracellular Matrix/metabolism , Cell Differentiation/physiology
14.
Arthritis Rheumatol ; 74(12): 1928-1942, 2022 12.
Article En | MEDLINE | ID: mdl-35791923

OBJECTIVE: Synovial fibrosis contributes to osteoarthritis (OA) pathology, but the underlying mechanisms remain unknown. We have observed increased microRNA-27b-3p (miR-27b-3p) levels in synovial fluid of patients with late-stage radiographic knee OA. Here, we investigated the contribution of miR-27b-3p to synovial fibrosis in patients with severe knee OA and in a mouse model of knee OA. METHODS: We stained synovium sections obtained from patients with radiographic knee OA scored according to the Kellgren/Lawrence scale and mice that underwent destabilization of the medial meniscus (DMM) for miR-27b-3p using in situ hybridization. We examined the effects of intraarticular injection of miR-27b-3p mimic into naive mouse knee joints and intraarticular injection of a miR-27b-3p inhibitor into mouse knee joints after DMM. We performed transfection with miR-27b-3p mimic and miR-27b-3p inhibitor in human OA fibroblast-like synoviocytes (FLS) using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) array, RNA sequencing, RT-qPCR, Western blotting, immunofluorescence, and migration assays. RESULTS: We observed increased miR-27b-3p expression in the synovium from patients with knee OA and in mice with DMM-induced arthritis. Injection of the miR-27b-3p mimic in mouse knee joints induced a synovial fibrosis-like phenotype, increased synovitis scores, and increased COL1A1 and α-smooth muscle actin (α-SMA) expression. In the mouse model of DMM-induced arthritis, injection of the miR-27b-3p inhibitor decreased α-SMA but did not change COL1A1 expression levels or synovitis scores. Transfection with the miR-27b-3p mimic in human OA FLS induced profibrotic responses, including increased migration and expression of key extracellular matrix (ECM) genes, but transfection with the miR-27b-3p inhibitor had the opposite effects. RNA sequencing identified a PPARG/ADAMTS8 signaling axis regulated by miR-27b-3p in OA FLS. Human OA FLS transfected with miR-27b-3p mimic and then treated with the PPARG agonist rosiglitazone or with ADAMTS8 small interfering RNA exhibited altered expression of select ECM genes. CONCLUSION: Our findings demonstrate that miR-27b-3p has a key role in ECM regulation associated with synovial fibrosis during OA.


MicroRNAs , Osteoarthritis, Knee , Synovitis , Animals , Humans , Mice , ADAMTS Proteins/metabolism , Fibrosis , MicroRNAs/metabolism , Osteoarthritis, Knee/genetics , Osteoarthritis, Knee/metabolism , PPAR gamma/metabolism , Synovial Membrane/metabolism , Synovitis/genetics , Synovitis/metabolism
15.
Biomaterials ; 286: 121586, 2022 07.
Article En | MEDLINE | ID: mdl-35635896

Inflammation-driven foreign body reactions, and the frequently associated encapsulation by fibrogenic fibroblasts, reduce the functionality and longevity of implanted medical devices and materials. Anti-inflammatory drugs, such as dexamethasone, can suppress the foreign body reaction for a few days post-surgery, but lasting drug delivery strategies for long-term implanted materials remain an unmet need. We here establish a thin-coating strategy with novel low molecular weight corticosteroid dimers to suppress foreign body reactions and fibrotic encapsulation of subcutaneous silicone implants. The dimer coatings are >75% dexamethasone by mass and directly processable into conformal coatings using conventional solvent-based techniques, such as casting or spray coating without added polymers or binding agents. In vitro, surface erosion of the coating, and subsequent hydrolysis, provide controlled release of free dexamethasone. In a rat subcutaneous implantation model, the resulting slow and sustained release profile of dexamethasone is effective at reducing the number and activation of pro-fibrotic macrophages both acutely and at chronic time points. Consequently, fibroblast activation, collagen deposition and fibrotic encapsulation are suppressed at least 45 days post-implantation. Thus, our approach to protect implants from host rejection is advantageous over polymeric drug delivery systems, which typically have low drug loading capacity (<30%), initial burst release profiles, and unpredictable release kinetics.


Polymers , Prostheses and Implants , Adrenal Cortex Hormones , Animals , Delayed-Action Preparations , Dexamethasone/chemistry , Fibrosis , Foreign-Body Reaction/prevention & control , Molecular Weight , Rats
16.
Cell Stem Cell ; 28(10): 1690-1707, 2021 10 07.
Article En | MEDLINE | ID: mdl-34624231

Multipotent stromal cells (MSCs) are vital for development, maintenance, function, and regeneration of most tissues. They can differentiate along multiple connective lineages, but unlike most other stem/progenitor cells, they carry out various other functions while maintaining their developmental potential. MSCs function as damage sensors, respond to injury by fostering regeneration through secretion of trophic factors as well as extracellular matrix (ECM) molecules, and contribute to fibrotic reparative processes when regeneration fails. Tissue-specific MSC identity, fate(s), and function(s) are being resolved through fate mapping coupled with single cell "omics," providing unparalleled insights into the secret lives of tissue-resident MSCs.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Cell Differentiation , Extracellular Matrix , Multipotent Stem Cells , Stromal Cells
17.
Physiology (Bethesda) ; 36(6): 382-391, 2021 11 01.
Article En | MEDLINE | ID: mdl-34704856

Cells spread on surfaces and within three-dimensional (3-D) matrixes as they grow, divide, and move. Both chemical and physical signals orchestrate spreading during normal development, wound healing, and pathological states such as fibrosis and tumor growth. Diverse molecular mechanisms drive different forms of cell spreading. This article discusses mechanisms by which cells spread in 2-D and 3-D and illustrates new directions in studies of this aspect of cell function.


Physics , Cell Adhesion , Cell Movement
18.
EMBO Mol Med ; 13(10): e14392, 2021 10 07.
Article En | MEDLINE | ID: mdl-34459121

Recessive dystrophic epidermolysis bullosa (RDEB), a genetic skin blistering disease, is a paradigmatic condition of tissue fragility-driven multi-organ fibrosis. Here, longitudinal analyses of the tissue proteome through the course of naturally developing disease in RDEB mice revealed that increased pro-inflammatory immunity associates with fibrosis evolution. Mechanistically, this fibrosis is a consequence of altered extracellular matrix organization rather than that of increased abundance of major structural proteins. In a humanized system of disease progression, we targeted inflammatory cell fibroblast communication with Ang-(1-7)-an anti-inflammatory heptapeptide of the renin-angiotensin system, which reduced the fibrosis-evoking aptitude of RDEB cells. In vivo, systemic administration of Ang-(1-7) efficiently attenuated progression of multi-organ fibrosis and increased survival of RDEB mice. Collectively, our study shows that selective down-modulation of pro-inflammatory immunity may mitigate injury-induced fibrosis. Furthermore, together with published data, our data highlight molecular diversity among fibrotic conditions. Both findings have direct implications for the design of therapies addressing skin fragility and fibrosis.


Epidermolysis Bullosa Dystrophica , Animals , Collagen Type VII , Epidermolysis Bullosa Dystrophica/pathology , Fibroblasts/pathology , Fibrosis , Mice
19.
Cells ; 10(7)2021 07 15.
Article En | MEDLINE | ID: mdl-34359963

Body implants and implantable medical devices have dramatically improved and prolonged the life of countless patients. However, our body repair mechanisms have evolved to isolate, reject, or destroy any object that is recognized as foreign to the organism and inevitably mounts a foreign body reaction (FBR). Depending on its severity and chronicity, the FBR can impair implant performance or create severe clinical complications that will require surgical removal and/or replacement of the faulty device. The number of review articles discussing the FBR seems to be proportional to the number of different implant materials and clinical applications and one wonders, what else is there to tell? We will here take the position of a fibrosis researcher (which, coincidentally, we are) to elaborate similarities and differences between the FBR, normal wound healing, and chronic healing conditions that result in the development of peri-implant fibrosis. After giving credit to macrophages in the inflammatory phase of the FBR, we will mainly focus on the activation of fibroblastic cells into matrix-producing and highly contractile myofibroblasts. While fibrosis has been discussed to be a consequence of the disturbed and chronic inflammatory milieu in the FBR, direct activation of myofibroblasts at the implant surface is less commonly considered. Thus, we will provide a perspective how physical properties of the implant surface control myofibroblast actions and accumulation of stiff scar tissue. Because formation of scar tissue at the surface and around implant materials is a major reason for device failure and extraction surgeries, providing implant surfaces with myofibroblast-suppressing features is a first step to enhance implant acceptance and functional lifetime. Alternative therapeutic targets are elements of the myofibroblast mechanotransduction and contractile machinery and we will end with a brief overview on such targets that are considered for the treatment of other organ fibroses.


Fibroblasts/transplantation , Foreign-Body Reaction/immunology , Myofibroblasts/cytology , Prostheses and Implants , Foreign-Body Reaction/metabolism , Humans , Macrophages/metabolism , Mechanotransduction, Cellular/immunology , Myofibroblasts/immunology
20.
Sci Rep ; 11(1): 15547, 2021 07 30.
Article En | MEDLINE | ID: mdl-34330953

This study aimed to assess the viability of dental cells following time-dependent carbamide peroxide teeth-whitening treatments using an in-vitro dentin perfusion assay model. 30 teeth were exposed to 5% or 16% CP gel (4 h daily) for 2-weeks. The enamel organic content was measured with thermogravimetry. The time-dependent viability of human dental pulp stem cells (HDPSCs) and gingival fibroblast cells (HGFCs) following either indirect exposure to 3 commercially available concentrations of CP gel using an in-vitro dentin perfusion assay or direct exposure to 5% H2O2 were investigated by evaluating change in cell morphology and by hemocytometry. The 5% and 16% CP produced a significantly lower (p < 0.001) enamel protein content (by weight) when compared to the control. The organic content in enamel varied accordingly to the CP treatment: for the 16% and 5% CP treatment groups, a variation of 4.0% and 5.4%, respectively, was observed with no significant difference. The cell viability of HDPSCs decreased exponentially over time for all groups. Within the limitation of this in-vitro study, we conclude that even low concentrations of H2O2 and CP result in a deleterious change in enamel protein content and compromise the viability of HGFCs and HDPSCs. These effects should be observed in-vivo.


Cell Survival/drug effects , Dental Pulp/cytology , Tooth Bleaching Agents/pharmacology , Bicuspid/cytology , Bicuspid/drug effects , Carbamide Peroxide/pharmacology , Cells, Cultured , Dental Enamel/cytology , Dental Enamel/drug effects , Dental Pulp/drug effects , Dentin/cytology , Dentin/drug effects , Humans , Hydrogen Peroxide/pharmacology , Molar/cytology , Molar/drug effects
...