Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 110(1-2): 015305, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39160911

RESUMEN

We present a comprehensive analysis of the non-Newtonian lattice Boltzmann method (LBM) when it is used to simulate the distribution of wall shear stress (WSS). We systematically identify sources of numerical errors associated with non-Newtonian rheological behavior of fluids in off-grid geometries. We implement the single relaxation time, Bhatnagar-Gross-Krook (BGK), and multiple relaxation time (MRT) collision operators and investigate flow in a two-dimensional channel aligned with lattice directions and off-grid Hagen-Poiseuille flow of Ostwald-de Waele (power-law) fluids. As for boundary conditions, we implement constant body force-driven and pressure-driven flows. These two boundary conditions have different numerical challenges, which include numerical stability, accuracy, mass conservation, and compressibility effects, which are inherent in the LBM method. Our results indicate that MRT, when the relaxation times are adequately tuned in the non-Newtonian case, significantly improves the WSS distribution accuracy and the numerical stability of the LBM. MRT also enhances the stability and accuracy for non-Newtonian fluids compared with the Newtonian case, meaning that it is questionable if a BGK collision operator is appropriate to use in a non-Newtonian case with off-grid boundaries. When analyzing the non-Newtonian LBM in the context of staircase walls and interpolated bounce-back (IBB) walls, a MRT collision operator with the appropriate choice of tunable relaxation times makes it possible to achieve numerically accurate results without a significant increase in grid resolution for matching to the analytical solution of WSS distributions. In analyzing the non-Newtonian flows, we show that the viscosity dependency of bounce-back walls in the BGK-LBM deviates from the results obtained under Newtonian assumptions. The power-law index further influences these discrepancies, and errors caused by the viscosity dependency of the bounce-back boundary conditions can be effectively mitigated by implementing the MRT procedure. Results show that non-Newtonian fluids, in contrast with the Newtonian assumption, encounter a greater mass imbalance when flowing through a periodic system with IBB walls. MRT can address this challenge, as it allows for independent adjustments of physical relaxation times and enhances mass conservation in the case of non-Newtonian fluids. In pressure-driven non-Newtonian flows, there is a significant impact of bulk viscosity. This aspect is often overlooked in Newtonian simulations but can significantly impact fluid adapting to rapid changes in local effective viscosity. One of our main conclusions is that the MRT collision operator with tuned relaxation times can effectively resolve numerical problems caused by non-Newtonian rheological properties and off-grid geometries. We also provide practical guidelines for selecting the most suitable simulation approach.

2.
Sci Rep ; 14(1): 13018, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844778

RESUMEN

Optimizing the injection water salinity could present a cost-effective strategy for improving oil recovery. Although the literature generally acknowledges that low-salinity improves oil recovery in laboratory-scale experiments, the physical mechanisms behind it are controversial. While most experimental low-salinity studies focus on brine composition, this study investigated the influence of carbonate rock material on surface charge change, wettability alteration, and spontaneous imbibition behavior. Zeta potential measurements showed that each tested carbonate rock material exhibits characteristic surface charge responses when exposed to Formation-water, Seawater, and Diluted-seawater. Moreover, the surface charge change sensitivity to calcium, magnesium, and sulfate ions varied for the tested carbonate materials. Spontaneous imbibition tests led to high oil recovery and, thus, wettability alteration towards water-wet conditions if the carbonate-imbibing brine system's surface charge decreased compared to the initial zeta potential of the carbonate Formation-water system. In the numerical part of the presented study, we find that it is essential to account for the location of the shear plane and thus distinguish between the numerically computed surface charge and experimentally determined zeta potential. The resulting model numerically reproduced the experimentally measured calcium, magnesium, and sulfate ion impacts on zeta potential. The spontaneous imbibition tests were history-matched by linking surface charge change to capillary pressure alteration. As the numerical simulation of the laboratory-scale spontaneous imbibition tests is governed by molecular diffusion (with a time scale of weeks), we conclude that molecular diffusion-driven field scale wettability alteration requires several hundred years.

3.
Sci Rep ; 14(1): 6941, 2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521832

RESUMEN

Univentricular heart anomalies represent a group of severe congenital heart defects necessitating early surgical intervention in infancy. The Fontan procedure, the final stage of single-ventricle palliation, establishes a serial connection between systemic and pulmonary circulation by channeling venous return to the lungs. The absence of the subpulmonary ventricle in this peculiar circulation progressively eventuates in failure, primarily due to chronic elevation in inferior vena cava (IVC) pressure. This study experimentally validates the effectiveness of an intracorporeally-powered venous ejector pump (VEP) in reducing IVC pressure in Fontan patients. The VEP exploits a fraction of aortic flow to create a jet-venturi effect for the IVC, negating the external power requirement and driveline infections. An invitro Fontan mock-up circulation loop is developed and the impact of VEP design parameters and physiological conditions is assessed using both idealized and patient-specific total cavopulmonary connection (TCPC) phantoms. The VEP performance in reducing IVC pressure exhibited an inverse relationship with the cardiac output and extra-cardiac conduit (ECC) size and a proportional relationship with the transpulmonary pressure gradient (TPG) and mean arterial pressure (MAP). The ideal VEP with fail-safe features provided an IVC pressure drop of 1.82 ± 0.49, 2.45 ± 0.54, and 3.12 ± 0.43 mm Hg for TPG values of 6, 8, and 10 mm Hg, respectively, averaged over all ECC sizes and cardiac outputs. Furthermore, the arterial oxygen saturation was consistently maintained above 85% during full-assist mode. These results emphasize the potential utility of the VEP to mitigate elevated venous pressure in Fontan patients.


Asunto(s)
Procedimiento de Fontan , Cardiopatías Congénitas , Corazón Univentricular , Humanos , Hemodinámica , Arteria Pulmonar , Ventrículos Cardíacos , Cardiopatías Congénitas/cirugía , Modelos Cardiovasculares
4.
Front Cardiovasc Med ; 10: 1156332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38054087

RESUMEN

Background: Attenuation is correlated with the concentration of contrast medium (CM) in the arteries. The cardiac output (CO) affects the concentration of CM in the circulatory system; therefore, CO affects the time-density curve (TDC). Thus, estimating CO using TDC from test-bolus images acquired in computed tomography (CT) is possible. In this study, we compare two methods of estimating CO, namely, an individualized mathematical compartment model, integrating patient, contrast, and scanning factors with TDC, and the Stewart-Hamilton method based on the area under the curve of the TDC. Materials and methods: Attenuation in the aorta was measured during test-bolus in 40 consecutive patients with a clinical indication for coronary CT angiography (CCTA). Each participant underwent cardiac magnetic resonance imaging following CCTA to validate the estimated CO. The individual compartment model used TDC in conjunction with scanning and patient-specific parameters to estimate the concentration of CM and CO over time. This was compared to the CO calculated from the area under the curve using the Stewart-Hamilton method. Results: Both CO estimated with our individualized compartment model (r = 0.66, p < 0.01) and the Stewart-Hamilton method (r = 0.53, p < 0.01) were moderately correlated with CO measured with cardiac MRI. Body surface area (BSA) and time to peak (TTP) affected the accuracy of our model. Lower BSA resulted in overestimation, and lower TTP resulted in CO underestimation, respectively. We found no gender-specific difference in the accuracy of our model when correcting for BSA. The Stewart-Hamilton method performed better with a more complete TDC, whereas the compartment model performed better overall with a partial TDC. Conclusion: The TDC acquired in CCTA allows for CO estimation. Both the Stewart-Hamilton method and our mathematical compartment model show moderate correlation when applied to our data, although each method has its strengths and limitations. If the majority of the TDC is known, the Stewart-Hamilton method may be more reliable, but an individual compartment model is preferable when there are insufficient data points in the TDC. Regardless, both methods can potentially increase the diagnostic information acquired from a CCTA, which is increasingly recommended in clinical guidelines.

5.
Cardiovasc Eng Technol ; 14(3): 428-446, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36877450

RESUMEN

PURPOSE: The Fontan circulation carries a dismal prognosis in the long term due to its peculiar physiology and lack of a subpulmonic ventricle. Although it is multifactorial, elevated IVC pressure is accepted to be the primary cause of Fontan's high mortality and morbidity. This study presents a self-powered venous ejector pump (VEP) that can be used to lower the high IVC venous pressure in single-ventricle patients. METHODS: A self-powered venous assist device that exploits the high-energy aortic flow to lower IVC pressure is designed. The proposed design is clinically feasible, simple in structure, and is powered intracorporeally. The device's performance in reducing IVC pressure is assessed by conducting comprehensive computational fluid dynamics simulations in idealized total cavopulmonary connections with different offsets. The device was finally applied to complex 3D reconstructed patient-specific TCPC models to validate its performance. RESULTS: The assist device provided a significant IVC pressure drop of more than 3.2 mm Hg in both idealized and patient-specific geometries, while maintaining a high systemic oxygen saturation of more than 90%. The simulations revealed no significant caval pressure rise (< 0.1 mm Hg) and sufficient systemic oxygen saturation (> 84%) in the event of device failure, demonstrating its fail-safe feature. CONCLUSIONS: A self-powered venous assist with promising in silico performance in improving Fontan hemodynamics is proposed. Due to its passive nature, the device has the potential to provide palliation for the growing population of patients with failing Fontan.


Asunto(s)
Procedimiento de Fontan , Cardiopatías Congénitas , Corazón Auxiliar , Humanos , Procedimiento de Fontan/efectos adversos , Arteria Pulmonar/cirugía , Hemodinámica , Vena Cava Inferior , Ventrículos Cardíacos/cirugía , Modelos Cardiovasculares , Cardiopatías Congénitas/cirugía
6.
Lab Chip ; 17(2): 293-303, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27934975

RESUMEN

In this paper, we propose a simple method to embed transparent reactive materials in a microfluidic cell, and to observe in situ the dissolution of the material. As an example, we show how to obtain the dissolution rate of a calcite window of optical quality, dissolved in water and hydrochloric acid (HCl). These fluids circulate at controlled flowrates in a channel which is obtained by xurography: double sided tape is cut out with a cutter plotter and placed between the calcite window and a non-reactive support. While the calcite window reacts in contact with the acid, its topography is measured in situ every 10 s using an interference microscope, with a pixel resolution of 4.9 µm and a vertical resolution of 50 nm. In order to avoid inlet influence on the reaction, a thin layer of photoresist is added on the calcite surface at the inlet and outlet. This layer is also used as a non reactive reference surface.

7.
Hum Biol ; 74(1): 137-42, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11931575

RESUMEN

This study examines the distribution of apolipoprotein E (APOE) alleles in a population of healthy male and female Norwegians (n = 798) below the age of 40. The -491A/T polymorphism of the promoter region of the APOE gene was also examined. A seminested polymerase chain reaction was applied in the genotyping. The results showed that the E3 allele had the highest frequency (0.744), followed by E4 (0.198) and E2 (0.058). The APOE frequencies found in this study differ significantly from those obtained in earlier Norwegian APOE phenotypings. The allele frequencies in the -491 site of the promoter region were 0.845 for the A allele and 0.155 for the T allele. The genotype frequency was highest for AA (0.707), followed by AT (0.277) and TT (0.016). Moreover, the A allele was in linkage disequilibrium to E4.


Asunto(s)
Apolipoproteínas E/genética , Frecuencia de los Genes , Polimorfismo Genético , Regiones Promotoras Genéticas , Adulto , Alelos , Distribución de Chi-Cuadrado , Femenino , Genotipo , Humanos , Masculino , Noruega/epidemiología , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA