Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Hum Cell ; 37(3): 840-853, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38546950

RESUMEN

Patient-derived organoids (PDOs) retain the original tumor's characteristics to a large degree and allow direct evaluation of the drug sensitivity, thereby emerging as a valuable resource for both basic and preclinical researches. Whereas most past studies stereotypically adopted a single PDO as an avatar of the patient, it remains to be investigated whether this assumption can be justified even for the tumor with spatial diversity. To address this issue, we established and characterized multiple PDOs originating from various sites of a patient with advanced uterine carcinosarcoma (UCS). Specifically, cancer cells were separately sampled from three sites; resected UCS tumor tissue, the peritoneal lavage fluid, and an intra-uterine brushing of the tumor. The three derived PDOs were morphologically undistinguishable, displaying typical carcinoma organoids-like appearance, but two of them proliferated at a faster rate. The primary tumor harbored mutations in TP53 and STK11 along with amplifications in CCNE1, ERBB2, and KRAS. These two mutations and the CCNE1 amplification were detected in all PDOs, while either KRAS or ERBB2 amplification was selectively observed in each PDO in a mutually exclusive manner. Observed intra-tumor heterogeneity in HER2 expression was differentially reproduced in the PDOs, which mirrored each PDO's sensitivity to HER2 inhibitors. Inter-PDO heterogeneity was also evident in sensitivity to standard cytotoxic agents. Lastly, a drug screening identified four candidate reagents commonly effective to all PDOs. Collectively, we showed that multiple PDOs could help reproduce the spatial diversity of a tumor and serve as a valuable resource in UCS research in many respects.


Asunto(s)
Neoplasias Endometriales , Proteínas Proto-Oncogénicas p21(ras) , Femenino , Humanos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Endometriales/patología , Organoides/patología
2.
Biomol NMR Assign ; 18(1): 65-70, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38526839

RESUMEN

NCYM is a cis-antisense gene of MYCN oncogene and encodes an oncogenic protein that stabilizes MYCN via inhibition of GSK3b. High NCYM expression levels are associated with poor clinical outcomes in human neuroblastomas, and NCYM overexpression promotes distant metastasis in animal models of neuroblastoma. Using vacuum-ultraviolet circular dichroism and small-angle X-ray scattering, we previously showed that NCYM has high flexibility with partially folded structures; however, further structural characterization is required for the design of anti-cancer agents targeting NCYM. Here we report the 1H, 15N and 13C nuclear magnetic resonance assignments of NCYM. Secondary structure prediction using Secondary Chemical Shifts and TALOS-N analysis demonstrates that the structure of NCYM is essentially disordered, even though residues in the central region of the peptide clearly present a propensity to adopt a dynamic helical structure. This preliminary study provides foundations for further analysis of interaction between NCYM and potential partners.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Humanos , Secuencia de Aminoácidos , Estructura Secundaria de Proteína , Isótopos de Nitrógeno
3.
Front Oncol ; 14: 1237378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390263

RESUMEN

Amplification of MYCN is observed in high-risk neuroblastomas (NBs) and is associated with a poor prognosis. MYCN expression is directly regulated by multiple transcription factors, including OCT4, MYCN, CTCF, and p53 in NB. Our previous study showed that inhibition of p53 binding at the MYCN locus induces NB cell death. However, it remains unclear whether inhibition of alternative transcription factor induces NB cell death. In this study, we revealed that the inhibition of OCT4 binding at the MYCN locus, a critical site for the human-specific OCT4-MYCN positive feedback loop, induces caspase-2-mediated cell death in MYCN-amplified NB. We used the CRISPR/deactivated Cas9 (dCas9) technology to specifically inhibit transcription factors from binding to the MYCN locus in the MYCN-amplified NB cell lines CHP134 and IMR32. In both cell lines, the inhibition of OCT4 binding at the MYCN locus reduced MYCN expression, thereby suppressing MYCN-target genes. After inhibition of OCT4 binding, differentially downregulated transcripts were associated with high-open reading frame (ORF) dominance score, which is associated with the translation efficiency of transcripts. These transcripts were enriched in splicing factors, including MYCN-target genes such as HNRNPA1 and PTBP1. Furthermore, transcripts with a high-ORF dominance score were significantly associated with genes whose high expression is associated with a poor prognosis in NB. Because the ORF dominance score correlates with the translation efficiency of transcripts, our findings suggest that MYCN maintains the expression of transcripts with high translation efficiency, contributing to a poor prognosis in NB. In conclusion, the inhibition of OCT4 binding at the MYCN locus resulted in reduced MYCN activity, which in turn led to the downregulation of high-ORF dominance transcripts and subsequently induced caspase-2-mediated cell death in MYCN-amplified NB cells. Therefore, disruption of the OCT4 binding at the MYCN locus may serve as an effective therapeutic strategy for MYCN-amplified NB.

4.
Cancer Sci ; 115(1): 125-138, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37996972

RESUMEN

Human papillomavirus 18 (HPV18) is a highly malignant HPV genotype among high-risk HPVs, characterized by the difficulty of detecting it in precancerous lesions and its high prevalence in adenocarcinomas. The cellular targets and molecular mechanisms underlying its infection remain unclear. In this study, we aimed to identify the cells targeted by HPV18 and elucidate the molecular mechanisms underlying HPV18 replication. Initially, we established a lentiviral vector (HPV18LCR-GFP vector) containing the HPV18 long control region promoter located upstream of EGFP. Subsequently, HPV18LCR-GFP vectors were transduced into patient-derived squamocolumnar junction organoids, and the presence of GFP-positive cells was evaluated. Single-cell RNA sequencing of GFP-positive and GFP-negative cells was conducted. Differentially expressed gene analysis revealed that 169 and 484 genes were significantly upregulated in GFP-positive and GFP-negative cells, respectively. Pathway analysis showed that pathways associated with cell cycle and viral carcinogenesis were upregulated in GFP-positive cells, whereas keratinization and mitophagy/autophagy-related pathways were upregulated in GFP-negative cells. siRNA-mediated luciferase reporter assay and HPV18 genome replication assay validated that, among the upregulated genes, ADNP, FHL2, and NPM3 were significantly associated with the activation of the HPV18 early promoter and maintenance of the HPV18 genome. Among them, NPM3 showed substantially higher expression in HPV-related cervical adenocarcinomas than in squamous cell carcinomas, and NPM3 knockdown of HPV18-infected cells downregulated stem cell-related genes. Our new experimental model allows us to identify novel genes involved in HPV18 early promoter activities. These molecules might serve as therapeutic targets in HPV18-infected cervical lesions.


Asunto(s)
Adenocarcinoma , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Papillomavirus Humano 18/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Adenocarcinoma/genética , Organoides/patología
5.
Front Oncol ; 13: 1213678, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074684

RESUMEN

NCYM, a Homininae-specific oncoprotein, is the first de novo gene product experimentally shown to have oncogenic functions. NCYM stabilizes MYCN and ß-catenin via direct binding and inhibition of GSK3ß and promotes cancer progression in various tumors. Thus, the identification of compounds that binds to NCYM and structural characterization of the complex of such compounds with NCYM are required to deepen our understanding of the molecular mechanism of NCYM function and eventually to develop anticancer drugs against NCYM. In this study, the DNA aptamer that specifically binds to NCYM and enhances interaction between NCYM and GSK3ß were identified for the first time using systematic evolution of ligands by exponential enrichment (SELEX). The structural properties of the complex of the aptamer and NCYM were investigated using atomic force microscopy (AFM) in combination with truncation and mutation of DNA sequence, pointing to the regions on the aptamer required for NCYM binding. Further analysis was carried out by small-angle X-ray scattering (SAXS). Structural modeling based on SAXS data revealed that when isolated, NCYM shows high flexibility, though not as a random coil, while the DNA aptamer exists as a dimer in solution. In the complex state, models in which NCYM was bound to a region close to an edge of the aptamer reproduced the SAXS data. Therefore, using a combination of SELEX, AFM, and SAXS, the present study revealed the structural properties of NCYM in its functionally active form, thus providing useful information for the possible future design of novel anti-cancer drugs targeting NCYM.

6.
Cancer Med ; 12(7): 8476-8489, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36691316

RESUMEN

BACKGROUND: Small cell carcinoma of the uterine cervix (SCCC) is a rare and highly malignant human papillomavirus (HPV)-associated cancer in which human genes related to the integration site can serve as a target for precision medicine. The aim of our study was to establish a workflow for precision medicine of HPV-associated cancer using patient-derived organoid. METHODS: Organoid was established from the biopsy of a patient diagnosed with HPV18-positive SCCC. Therapeutic targets were identified by whole exome sequencing (WES) and RNA-seq analysis. Drug sensitivity testing was performed using organoids and organoid-derived mouse xenograft model. RESULTS: WES revealed that both the original tumor and organoid had 19 somatic variants in common, including the KRAS p.G12D pathogenic variant. Meanwhile, RNA-seq revealed that HPV18 was integrated into chromosome 8 at 8q24.21 with increased expression of the proto-oncogene MYC. Drug sensitivity testing revealed that a KRAS pathway inhibitor exerted strong anti-cancer effects on the SCCC organoid compared to a MYC inhibitor, which were also confirmed in the xenograft model. CONCLUSION: In this study, we confirmed two strategies for identifying therapeutic targets of HPV-derived SCCC, WES for identifying pathogenic variants and RNA sequencing for identifying HPV integration sites. Organoid culture is an effective tool for unveiling the oncogenic process of rare tumors and can be a breakthrough for the development of precision medicine for patients with HPV-positive SCCC.


Asunto(s)
Carcinoma de Células Pequeñas , Neoplasias Pulmonares , Infecciones por Papillomavirus , Carcinoma Pulmonar de Células Pequeñas , Neoplasias del Cuello Uterino , Femenino , Humanos , Animales , Ratones , Carcinoma de Células Pequeñas/tratamiento farmacológico , Carcinoma de Células Pequeñas/genética , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Papillomavirus Humano 18/genética , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/patología , Medicina de Precisión , Proteínas Proto-Oncogénicas p21(ras)/genética
7.
Int J Cancer ; 152(5): 962-976, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36214789

RESUMEN

Cervical cancer remains a major threat to women's health, especially in countries with limited medical resources, and new drugs are needed to improve patient survival and minimize adverse effects. Here, we examine the effects of a triphenylphosphonium (TPP)-conjugated pyrrole-imidazole polyamide (CCC-h1005) targeting the common homoplasmic mitochondrial DNA (mtDNA) cancer risk variant (ATP6 8860A>G) on the survival of cervical cancer cell lines, cisplatin-resistant HeLa cells and patient-derived cervical clear cell carcinoma cells as models of cervical cancer treatment. We found that CCC-h1005 induced death in these cells and suppressed the growth of xenografted HeLa tumors with no severe adverse effects. These results suggest that PIP-TPP designed to target mtDNA cancer risk variants can be used to treat many cervical cancers harboring high copies of the target variant, providing a foundation for clinical trials of this class of molecules for treating cervical cancer and other types of cancers.


Asunto(s)
Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Nylons/farmacología , ADN Mitocondrial/genética , Células HeLa , Pirroles/farmacología , Imidazoles/farmacología
8.
Cancer Sci ; 114(3): 1165-1179, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36382538

RESUMEN

Acinar cell carcinoma (ACC) of the pancreas is a malignant tumor of the exocrine cell lineage with a poor prognosis. Due to its rare incidence and technical difficulties, few authentic human cell lines are currently available, hampering detailed investigations of ACC. Therefore, we applied the organoid culture technique to various types of specimens, such as bile, biopsy, and resected tumor, obtained from a single ACC patient. Despite the initial propagation, none of these organoids achieved long-term proliferation or tolerated cryopreservation, confirming the challenging nature of establishing ACC cell lines. Nevertheless, the biopsy-derived early passage organoid developed subcutaneous tumors in immunodeficient mice. The xenograft tumor histologically resembled the original tumor and gave rise to infinitely propagating organoids with solid features and high levels of trypsin secretion. Moreover, the organoid stained positive for carboxylic ester hydrolase, a specific ACC marker, but negative for the duct cell marker CD133 and the endocrine lineage marker synaptophysin. Hence, we concluded the derivation of a novel ACC cell line of the pure exocrine lineage, designated HS-1. Genomic analysis revealed extensive copy number alterations and mutations in EP400 in the original tumor, which were enriched in primary organoids. HS-1 displayed homozygous deletion of CDKN2A, which might underlie xenograft formation from organoids. Although resistant to standard cytotoxic agents, the cell line was highly sensitive to the proteasome inhibitor bortezomib, as revealed by an in vitro drug screen and in vivo validation. In summary, we document a novel ACC cell line, which could be useful for ACC studies in the future.


Asunto(s)
Carcinoma de Células Acinares , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Carcinoma de Células Acinares/genética , Carcinoma de Células Acinares/metabolismo , Carcinoma de Células Acinares/patología , Homocigoto , Eliminación de Secuencia , Neoplasias Pancreáticas/patología , Organoides/metabolismo , Línea Celular , Neoplasias Pancreáticas
10.
J Toxicol Pathol ; 35(3): 211-223, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35832903

RESUMEN

Recently, we introduced an organoid-based chemical carcinogenesis model using mouse normal tissue-derived organoids. In the present review article, the histopathological and immunohistochemical characteristics of mouse normal tissue-derived organoids and tumors derived from these organoids after their in vitro treatment with genotoxic carcinogens and injection into nude mouse are reviewed. In organoids treated in vitro with genotoxic carcinogens, we confirmed macroscopic tumorigenicity and histopathological findings, including neoplastic characteristics, such as multilayered epithelia and/or invasion of epithelia into the surrounding interstitium. In contrast glandular/cystic structures with monolayered epithelia were clearly demarcated from the surrounding Matrigel/interstitium in the untreated control groups. In addition to macroscopic tumorigenicity, these microscopic epithelial changes, which are characteristic of the early stages of carcinogenesis, are included in the requirements for carcinogenicity-positive judgement of the organoid-based carcinogenesis model. Immunohistochemistry of cytokeratins (CKs), used to determine the origin of epithelia and distribution of extraductal invasive lesions, or oncogenic kinases, which reflect molecular activation in epithelia following chemical treatment, is helpful for accurate diagnosis and molecular evaluation in the early stages of carcinogenesis. This information improves our biological understanding of organoid-based chemical carcinogenesis models.

11.
Front Genet ; 12: 798628, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956336

RESUMEN

Endometrial cancer (EC) is the most common malignancy of the female reproductive tract worldwide. Although comprehensive genomic analyses of EC have already uncovered many recurrent genetic alterations and deregulated signaling pathways, its disease model has been limited in quantity and quality. Here, we review the current status of genetic models for EC in mice, which have been developed in two distinct ways at the level of organisms and cells. Accordingly, we first describe the in vivo model using genetic engineering. This approach has been applied to only a subset of genes, with a primary focus on Pten inactivation, given that PTEN is the most frequently altered gene in human EC. In these models, the tissue specificity in genetic engineering determined by the Cre transgenic line has been insufficient. Consequently, the molecular mechanisms underlying EC development remain poorly understood, and preclinical models are still limited in number. Recently, refined Cre transgenic mice have been created to address this issue. With highly specific gene recombination in the endometrial cell lineage, acceptable in vivo modeling of EC development is warranted using these Cre lines. Second, we illustrate an emerging cell-based model. This hybrid approach comprises ex vivo genetic engineering of organoids and in vivo tumor development in immunocompromised mice. Although only a few successful cases have been reported as proof of concept, this approach allows quick and comprehensive analysis, ensuring a high potential for reconstituting carcinogenesis. Hence, ex vivo/in vivo hybrid modeling of EC development and its comparison with corresponding in vivo models may dramatically accelerate EC research. Finally, we provide perspectives on future directions of EC modeling.

13.
BMC Biol ; 19(1): 207, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548081

RESUMEN

BACKGROUND: Intra-tumor heterogeneity (ITH) encompasses cellular differences in tumors and is related to clinical outcomes such as drug resistance. However, little is known about the dynamics of ITH, owing to the lack of time-series analysis at the single-cell level. Mouse models that recapitulate cancer development are useful for controlled serial time sampling. RESULTS: We performed single-cell exome and transcriptome sequencing of 200 cells to investigate how ITH is generated in a mouse colorectal cancer model. In the model, a single normal intestinal cell is grown into organoids that mimic the intestinal crypt structure. Upon RNAi-mediated downregulation of a tumor suppressor gene APC, the transduced organoids were serially transplanted into mice to allow exposure to in vivo microenvironments, which play relevant roles in cancer development. The ITH of the transcriptome increased after the transplantation, while that of the exome decreased. Mutations generated during organoid culture did not greatly change at the bulk-cell level upon the transplantation. The RNA ITH increase was due to the emergence of new transcriptional subpopulations. In contrast to the initial cells expressing mesenchymal-marker genes, new subpopulations repressed these genes after the transplantation. Analyses of colorectal cancer data from The Cancer Genome Atlas revealed a high proportion of metastatic cases in human subjects with expression patterns similar to the new cell subpopulations in mouse. These results suggest that the birth of transcriptional subpopulations may be a key for adaptation to drastic micro-environmental changes when cancer cells have sufficient genetic alterations at later tumor stages. CONCLUSIONS: This study revealed an evolutionary dynamics of single-cell RNA and DNA heterogeneity in tumor progression, giving insights into the mesenchymal-epithelial transformation of tumor cells at metastasis in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Animales , Neoplasias Colorrectales/genética , ADN , Exoma/genética , Heterogeneidad Genética , Ratones , ARN , Análisis de Secuencia de ARN , Microambiente Tumoral
14.
Oncogenesis ; 10(6): 46, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172714

RESUMEN

KRAS, an oncogene, is frequently activated by mutations in many cancers. Kras-driven adenocarcinoma development in the lung, pancreas, and biliary tract has been extensively studied using gene targeting in mice. By taking the organoid- and allograft-based genetic approach to these organs, essentially the same results as in vivo models were obtained in terms of tumor development. To verify the applicability of this approach to other organs, we investigated whether the combination of Kras activation and Pten inactivation, which gives rise to endometrial tumors in mice, could transform murine endometrial organoids in the subcutis of immunodeficient mice. We found that in KrasG12D-expressing endometrial organoids, Pten knockdown did not confer tumorigenicity, but Cdkn2a knockdown or Trp53 deletion led to the development of carcinosarcoma (CS), a rare, aggressive tumor comprising both carcinoma and sarcoma. Although they originated from epithelial cells, some CS cells expressed both epithelial and mesenchymal markers. Upon inoculation in immunodeficient mice, tumor-derived round organoids developed carcinoma or CS, whereas spindle-shaped organoids formed monophasic sarcoma only, suggesting an irreversible epithelial-mesenchymal transition during the transformation of endometrial cells and progression. As commonly observed in mutant Kras-driven tumors, the deletion of the wild-type Kras allele was identified in most induced tumors, whereas some epithelial cells in CS-derived organoids were unexpectedly negative for KrasG12D. Collectively, we showed that the oncogenic potential of KrasG12D and the histological features of derived tumors are context-dependent and varies according to the organ type and experimental settings. Our findings provide novel insights into the mechanisms underlying tissue-specific Kras-driven tumorigenesis.

15.
Cancers (Basel) ; 13(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064809

RESUMEN

Epithelial cells in the biliary system can develop refractory types of cancers, which are often associated with inflammation caused by viruses, parasites, stones, and chemicals. Genomic studies have revealed recurrent genetic changes and deregulated signaling pathways in biliary tract cancer (BTC). The causal roles have been at least partly clarified using various genetically engineered mice. Technical advances in Cre-LoxP technology, together with hydrodynamic tail injection, CRISPR/Cas9 technology, in vivo electroporation, and organoid culture have enabled more precise modeling of BTC. Organoid-based genetic modeling, combined with implantation in mice, has recently drawn attention as a means to accelerate the development of BTC models. Although each model may not perfectly mimic the disease, they can complement one another, or two different approaches can be integrated to establish a novel model. In addition, a comparison of the outcomes among these models with the same genotype provides mechanistic insights into the interplay between genetic alterations and the microenvironment in the pathogenesis of BTCs. Here, we review the current status of genetic models of BTCs in mice to provide information that facilitates the wise selection of models and to inform the future development of ideal disease models.

16.
J Pathol ; 255(2): 177-189, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34184756

RESUMEN

Genetically engineered mice have been the gold standard in modeling tumor development. Recent studies have demonstrated that genetically engineered organoids can develop subcutaneous tumors in immunocompromised mice, at least for organs that prefer predominant driver mutations for tumorigenesis. To further substantiate this concept, the fallopian tube (FT), a major cell of origin of ovarian high-grade serous carcinoma (HGSC), which almost invariably carries TP53 mutations, was investigated for p53 inactivation-driven tumorigenesis. Murine FT organoids subjected to lentiviral Cre-mediated Trp53 deletion did not develop tumors. However, subsequent suppression of Pten and simultaneous induction of mutant Pik3ca led to the development of carcinoma in situ and HGSC-like tumors, respectively, whereas concurrent deletion of Apc resulted in the development of benign cysts, mirroring frequent activation of the PI3K/AKT axis and the marginal impact of Wnt pathway activation in HGSC. Consistent with the frequent activation of the RAS pathway in HGSC, mutant Kras cooperated with Trp53 deletion for the development of tumors, which unexpectedly contained sarcoma cells in addition to carcinoma cells, despite the epithelial origin of the inoculated organoids. This finding is in sharp contrast with the exclusive adenocarcinoma development from gastrointestinal organoids with the same genotype reported in previous studies, suggesting a tissue-specific epithelial-mesenchymal transition program. In tumor-derived organoids, the Cre-mediated recombination rate reached 100% for Trp53 but not for the other genes, highlighting the advantage of p53 inactivation in FT tumorigenesis. The Trp53 wildtype FT organoids expressing the mutant Kras developed sarcoma and carcinoma upon Cdkn2a suppression and Tgfbr2 deletion, respectively, revealing novel pro-tumorigenic genetic cooperation and critical roles of TGF-ß signaling for epithelial-mesenchymal transition in FT-derived tumorigenesis. Collectively, the organoid-based approach represents a shortcut to tumorigenesis and provides novel insights into the relationships among genotype, cell type, and tumor phenotype underlying tumorigenesis. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Carcinogénesis/patología , Trompas Uterinas/patología , Neoplasias Experimentales/patología , Organoides/patología , Lesiones Precancerosas/patología , Animales , Carcinogénesis/genética , Carcinoma Epitelial de Ovario , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Femenino , Ratones , Neoplasias Experimentales/genética , Lesiones Precancerosas/genética , Proteína p53 Supresora de Tumor/genética
17.
Oncogenesis ; 10(4): 33, 2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33866327

RESUMEN

Genetically engineered mice (GEM) are the gold standard for cancer modeling. However, strict recapitulation of stepwise carcinogenesis from a single tumor-initiating epithelial cell among genetically intact cells in adults is not feasible with the currently available techniques using GEM. In previous studies, we partially overcame this challenge by physically isolating organs from adult animals, followed by genetic engineering in organoids and subcutaneous inoculation in nude mice. Despite the establishment of suitable ex vivo carcinogenesis models for diverse tissues, tumor development remained ectopic and occurred under immunodeficient conditions. Further refinement was, therefore, necessary to establish ideal models. Given the poor prognosis and few models owing to the lack of gall bladder (GB)-specific Cre strain, we assumed that the development of authentic models would considerably benefit GB cancer research. Here, we established a novel model using GB organoids with mutant Kras and Trp53 loss generated in vitro by lentiviral Cre transduction and CRISPR/Cas9 gene editing, respectively. Organoid-derived subcutaneous tumor fragments were sutured to the outer surface of the GB in syngeneic mice, which developed orthotopic tumors that resembled human GB cancer in histological and transcriptional features. This model revealed the infiltration of similar subsets of immune cells in both subcutaneous and orthotopic tumors, confirming the appropriate immune environment during carcinogenesis. In addition, we accurately validated the in vivo efficacy of gemcitabine, a common therapeutic agent for GB cancer, in large cohorts. Taken together, this model may serve as a promising avatar of patients with GB cancer in drug discovery and precision medicine.

18.
J Obstet Gynaecol Res ; 47(7): 2551-2554, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33870616

RESUMEN

Cervical clear cell carcinoma (CCCC) is rare. This report describes the case of CCCC with a serous component. A 22-year-old woman presented with vaginal bleeding. A cervical tumor was discovered: pelvic magnetic resonance imaging revealed a tumor measuring 46 mm. Radical hysterectomy was performed based on the diagnosis of stage IB2 cervical cancer. After histological examination of the specimen revealed a coexisting invasive clear cell carcinoma (95%) and serous carcinoma (5%), five cycles of nedaplatin and irinotecan therapy were administered as postoperative adjuvant chemotherapy. Local recurrence in the vaginal vault was observed at 7 months after surgery. Radiation therapy and chemotherapy were administered. The patient is alive without evidence of recurrence at 26 months after surgery.


Asunto(s)
Carcinoma , Neoplasias del Cuello Uterino , Adulto , Quimioterapia Adyuvante , Femenino , Humanos , Histerectomía , Terapia Neoadyuvante , Recurrencia Local de Neoplasia , Estadificación de Neoplasias , Estudios Retrospectivos , Neoplasias del Cuello Uterino/patología , Adulto Joven
19.
Cancers (Basel) ; 12(3)2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32183493

RESUMEN

The metaplastic epithelium of the transformation zone (TZ) including the squamocolumnar junction (SCJ) of the uterine cervix is a prime target of human papilloma virus (HPV) infection and subsequent cancer development. Due to the lack of adequate in vitro models for SCJ, however, investigations into its physiological roles and vulnerability to carcinogenesis have been limited. By using Matrigel-based three-dimensional culture techniques, we propagated organoids derived from the normal SCJ region, along with metaplastic squamous cells in the TZ. Consisting predominantly of squamous cells, organoids basically exhibited a dense structure. However, at least in some organoids, a small but discrete population of mucin-producing endocervix cells co-existed adjacent to the squamous cell population, virtually recapitulating the configuration of SCJ in a TZ background. In addition, transcriptome analysis confirmed a higher expression level of many SCJ marker genes in organoids, compared to that in the immortalized cervical cell lines of non-SCJ origin. Thus, the obtained organoids appear to mimic cervical SCJ cells and, in particular, metaplastic squamous cells from the TZ, likely providing a novel platform in which HPV-driven cervical cancer development could be investigated.

20.
Carcinogenesis ; 41(10): 1444-1453, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32047892

RESUMEN

Animal carcinogenesis models induced by environmental chemicals have been widely used for basic and applied cancer research. However, establishment of in vitro or ex vivo models is essential for molecular mechanistic elucidation of early events in carcinogenesis, leading to clarification of the total mode of action. In the present study, to establish an organoid-based chemical carcinogenesis model, mouse organoids were treated in vitro with 4 genotoxic chemicals, e.g. ethyl methanesulfonate (EMS), acrylamide (AA), diethylnitrosamine (DEN) and 7,12-dimethylbenz[a]anthracene (DMBA) to examine their tumorigenicity after injection to nude mice. The four chemicals were reported to induce lung, liver or mammary carcinomas in mouse models. DMBA-treated mammary tissue-derived organoids with Trp53 heterozygous knockout exhibited tumorigenicity, but not those with wild-type Trp53, reflecting previous reports of corresponding animal models. Treatment of lung organoids with or without Trp53 knockout with EMS or AA resulted in carcinogenic histopathological characteristics, and the activation of oncogenic kinases was demonstrated in the nodules from the nude mouse subcutis. DEN-treated liver (biliary tract) organoids also had an increased number of similar changes. In conclusion, an ex vivo model for chemical carcinogenesis was established using normal mouse tissue-derived organoids. This model will be applied to detect early molecular events, leading to clarification of the mode of action of chemical carcinogenesis.


Asunto(s)
Carcinogénesis/inducido químicamente , Neoplasias Experimentales/inducido químicamente , Organoides/efectos de los fármacos , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Acrilamida/toxicidad , Animales , Carcinogénesis/genética , Carcinógenos/toxicidad , Dietilnitrosamina/toxicidad , Metanosulfonato de Etilo/toxicidad , Hígado/efectos de los fármacos , Pulmón/efectos de los fármacos , Ratones , Ratones Noqueados , Ratones Desnudos , Organoides/patología , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...