Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(21): 13738-13744, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38741024

RESUMEN

We demonstrate the impact of high-density calcium introduction into Ca-intercalated bilayer graphene on a SiC substrate, wherein a metallic layer of Ca has been identified at the interface. We have discerned that the additional Ca layer engenders a free-electron-like band, which subsequently hybridizes with a Dirac band, leading to the emergence of a van Hove singularity. Coinciding with this, there is an increase in the critical temperature for superconductivity. These findings allude to the manifestation of Ca-driven confinement epitaxy, augmenting superconductivity through the enhancement of attractive interactions in a pair of electron and hole bands with flat dispersion around the Fermi level.

2.
ACS Nano ; 16(3): 3582-3592, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35209713

RESUMEN

Ca-intercalation has enabled superconductivity in graphene on SiC. However, the atomic and electronic structures that are critical for superconductivity are still under discussion. We find an essential role of the interface between monolayer graphene and the SiC substrate for superconductivity. In the Ca-intercalation process, at the interface a carbon layer terminating SiC changes to graphene by Ca-termination of SiC (monolayer graphene becomes a bilayer), inducing more electrons than a free-standing model. Then, Ca is intercalated in between the graphene layers, which shows superconductivity with the updated critical temperature (TC) of up to 5.7 K. In addition, the relation between TC and the normal-state conductivity is unusual, "dome-shaped". These findings are beyond the simple C6CaC6 model in which s-wave BCS superconductivity is theoretically predicted. This work proposes a general picture of the intercalation-induced superconductivity in graphene on SiC and indicates the potential for superconductivity induced by other intercalants.

3.
Nano Lett ; 22(3): 881-887, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35084202

RESUMEN

A magnetic skyrmion induced on a ferromagnetic topological insulator (TI) is a real-space manifestation of the chiral spin texture in the momentum space and can be a carrier for information processing by manipulating it in tailored structures. Here, a sandwich structure containing two layers of a self-assembled ferromagnetic septuple-layer TI, Mn(Bi1-xSbx)2Te4 (MnBST), separated by quintuple layers of TI, (Bi1-xSbx)2Te3 (BST), is fabricated and skyrmions are observed through the topological Hall effect in an intrinsic magnetic topological insulator for the first time. The thickness of BST spacer layer is crucial in controlling the coupling between the gapped topological surface states in the two MnBST layers to stabilize the skyrmion formation. The homogeneous, highly ordered arrangement of the Mn atoms in the septuple-layer MnBST leads to a strong exchange interaction therein, which makes the skyrmions "soft magnetic". This would open an avenue toward a topologically robust rewritable magnetic memory.

4.
Nano Lett ; 21(23): 10086-10091, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34807612

RESUMEN

In electrochemical devices, it is important to control the ionic transport between the electrodes and solid electrolytes. However, it is difficult to tune the transport without applying an electric field. This paper presents a method to modulate the transport via tuning of the electrochemical potential difference by controlling the electronic states at the interfaces. We fabricated thin-film solid-state Li batteries using LiTi2O4 thin films as positive electrodes. The spontaneous Li-ion transport between the solid electrolyte and LiTi2O4 is controlled by tuning the electrochemical potential difference via use of an electrically conducting Nb-doped SrTiO3 substrate. This study establishes the foundation for rectifying the ionic transport via electronic energy band alignment.

5.
Phys Rev Lett ; 124(22): 227002, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32567930

RESUMEN

We investigated the superconducting transport properties of the one-unit-cell FeSe ultrathin films epitaxially grown on undoped SrTiO_{3}(001) (STO) with a well-defined surface structure by in situ independently-driven four-point-probe measurements. Our results unambiguously revealed the detection of the two-dimensional electrical conduction of the films without parallel conduction through the underlying substrate, both in the normal and superconducting states. The monolayer film exhibited a superconducting transition at an onset temperature of 40 K. Surprisingly, the onset of superconductivity was constantly observed at 40 K even for three- and five-unit-cell-thick FeSe films, even though the normal resistivity decreased with increasing thickness. These results agree with the picture of the interfacial superconductivity, where only the FeSe/STO interface and/or the adjacent first layer of FeSe becomes superconducting while the upper layers stay in the normal metallic state. The observed T_{c} is much lower than that reported by a previous in situ transport measurement for FeSe/Nb:STO but consistent with the results obtained by ex situ measurements for FeSe-undoped STO with a capping layer. This suggests that the capping layer is not an essential factor to limit T_{c}. We rather propose that the charge transfer from the doped substrate has a key role to achieve the higher temperature superconductivity in the one-unit-cell FeSe.

6.
Nano Lett ; 17(6): 3493-3500, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28545300

RESUMEN

Inducing magnetism into topological insulators is intriguing for utilizing exotic phenomena such as the quantum anomalous Hall effect (QAHE) for technological applications. While most studies have focused on doping magnetic impurities to open a gap at the surface-state Dirac point, many undesirable effects have been reported to appear in some cases that makes it difficult to determine whether the gap opening is due to the time-reversal symmetry breaking or not. Furthermore, the realization of the QAHE has been limited to low temperatures. Here we have succeeded in generating a massive Dirac cone in a MnBi2Se4/Bi2Se3 heterostructure, which was fabricated by self-assembling a MnBi2Se4 layer on top of the Bi2Se3 surface as a result of the codeposition of Mn and Se. Our experimental results, supported by relativistic ab initio calculations, demonstrate that the fabricated MnBi2Se4/Bi2Se3 heterostructure shows ferromagnetism up to room temperature and a clear Dirac cone gap opening of ∼100 meV without any other significant changes in the rest of the band structure. It can be considered as a result of the direct interaction of the surface Dirac cone and the magnetic layer rather than a magnetic proximity effect. This spontaneously formed self-assembled heterostructure with a massive Dirac spectrum, characterized by a nontrivial Chern number C = -1, has a potential to realize the QAHE at significantly higher temperatures than reported up to now and can serve as a platform for developing future "topotronics" devices.

7.
Phys Rev Lett ; 113(20): 206802, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25432051

RESUMEN

We performed in situ magnetotransport measurements on ultrathin Bi(111) films [4-30 bilayers (BLs), 16-120 Å thick] to elucidate the role of bulk or surface states in the transport phenomena. We found that the temperature dependence of the film conductivity shows no thickness dependence for the 6-16 BL films and is affected by the electron-electron scattering, suggesting surface-state dominant contribution. In contrast, the weak antilocalization effect observed by applying a magnetic field shows clear thickness dependence, indicating bulk transport. This apparent inconsistency is explained by a coherent bulk-surface coupling that produces a single channel transport. For the films thicker than 20 BLs, the behavior changes drastically which can likely be interpreted as a bulk dominant conduction.

8.
J Am Chem Soc ; 136(41): 14357-60, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25251306

RESUMEN

A bulk material comprising stacked nanosheets of nickel bis(dithiolene) complexes is investigated. The average oxidation number is -3/4 for each complex unit in the as-prepared sample; oxidation or reduction respectively can change this to 0 or -1. Refined electrical conductivity measurement, involving a single microflake sample being subjected to the van der Pauw method under scanning electron microscopy control, reveals a conductivity of 1.6 × 10(2) S cm(-1), which is remarkably high for a coordination polymeric material. Conductivity is also noted to modulate with the change of oxidation state. Theoretical calculation and photoelectron emission spectroscopy reveal the stacked nanosheets to have a metallic nature. This work provides a foothold for the development of the first organic-based two-dimensional topological insulator, which will require the precise control of the oxidation state in the single-layer nickel bisdithiolene complex nanosheet (cf. Liu, F. et al. Nano Lett. 2013, 13, 2842).

9.
Phys Rev Lett ; 110(23): 237001, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25167523

RESUMEN

In situ micro-four-point-probe conductivity measurements in ultrahigh vacuum revealed that the Si(111)-striped incommensurate-Pb surface showed the superconductivity transition at 1.1 K. Both of the hexagonal and rectangular phases of Si(111)√[7]×√[3]-In surface showed superconductivity at 2.4 and 2.8 K, respectively. By applying magnetic field perpendicular to the surface, the upper critical field was deduced to be 0.1-1 T. The derived Ginzburg-Landau coherence length of the Cooper pairs was several tens of nm, which was much smaller than the Pippard's coherence length estimated from the band structures. The short coherence length is determined by the carrier mean free path.

10.
Phys Rev Lett ; 107(16): 166801, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22107414

RESUMEN

We report the formation of a bilayer Bi(111) ultrathin film, which is theoretically predicted to be in a two-dimensional quantum spin Hall state, on a Bi(2)Te(3) substrate. From angle-resolved photoemission spectroscopy measurements and ab initio calculations, the electronic structure of the system can be understood as an overlap of the band dispersions of bilayer Bi and Bi(2)Te(3). Our results show that the Dirac cone is actually robust against nonmagnetic perturbations and imply a unique situation where the topologically protected one- and two-dimensional edge states are coexisting at the surface.

11.
Phys Rev Lett ; 104(15): 156805, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20482008

RESUMEN

The electronic structure of ultrathin Ag(111) films covered with a square root(3) x square root(3)-Bi/Ag ordered alloy was investigated by means of spin- and angle-resolved photoemission spectroscopy. Surface-state (SS) bands, spin split by the Rashba interaction, selectively couple to the quantum-well state (QWS) bands, originally spin degenerate, in the metal film. Gaps are found to open between QWS and SS with parallel spins, while free-electron-like QWS dispersions are observed for antiparallel spin configurations. The present results demonstrate that in a nonmagnetic metal film the spin degeneracy of the valence levels can be lifted by hybridization with Rashba-type SS bands.

12.
Phys Rev Lett ; 101(10): 107604, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18851258

RESUMEN

The electronic structure of Ag(111) quantum well films covered with a (sqrt[3]xsqrt[3]) R30 degrees Bi/Ag surface ordered alloy, which shows a Rashba spin-split surface state, is investigated with angle-resolved photoemission spectroscopy. The band dispersion of the spin-split surface state is significantly modified by the interaction with the quantum well states of Ag films. The interaction is well described by the band hybridization model, which concludes the spin polarization of the quantum well states.

13.
Phys Rev Lett ; 99(14): 146805, 2007 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-17930700

RESUMEN

Temperature-dependent electron transport in a metallic surface superstructure, Si(111)sqrt[3] x sqrt[3]-Ag, was studied by a micro-four-point probe method and photoemission spectroscopy. The surface-state conductivity exhibits a sharp transition from metallic conduction to strong localization at approximately 150 K. The metallic regime is due to electron-phonon interaction while the localization seemingly originates from coherency of electron waves. Random potential variations, caused by Friedel oscillations of surface electrons around defects, likely induce strong carrier localization.

14.
Phys Rev Lett ; 98(24): 247601, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17677992

RESUMEN

We report the energy dispersions of the highest occupied molecular orbitals (HOMO)-derived bands of a pentacene (Pn) thin film, whose in-plane structure resembles closely that of the ab plane of a low-density bulk Pn phase. Our present photoemission result indicates that the overlap of the pi-orbitals of adjacent Pn molecules is larger than what was expected from theoretical calculations. Further, of the two HOMO-derived bands, the large dispersion width of the band with higher binding energy suggests that this one mainly contributes to the bandlike charge transport in a Pn crystal.

15.
Phys Rev Lett ; 96(25): 256801, 2006 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16907332

RESUMEN

The in-plane energy dispersion of quantized states in an ultrathin Ag film formed on the one-dimensional (1D) surface superstructure Si(111)-(4 x 1)-In shows clear 1D anisotropy instead of the isotropic two-dimensional free-electron-like behavior expected for an isolated metal film. The present photoemission results demonstrate that an atomic layer at the film-substrate interface can regulate the dimensionality of electron motion in quantum films.

16.
Phys Rev Lett ; 93(23): 236801, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15601184

RESUMEN

We have succeeded in measuring the resistance across a single atomic step through a monatomic-layer metal on a crystal surface, Si(111)(sqrt[3]xsqrt[3])-Ag, using three independent methods, which yielded consistent values of the resistance. Two of the methods were direct measurements with monolithic microscopic four-point probes and four-tip scanning tunneling microscope probes. The third method was the analysis of electron standing waves near step edges, combined with the Landauer formula for 2D conductors. The conductivity across a monatomic step was determined to be about 5 x 10(3) Omega(-1) m(-1). Electron transport across an atomic step is modeled as a tunneling process through an energy-barrier height approximately equal to the work function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...