Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Gene Ther ; 30(7-8): 641-648, 2023 08.
Article En | MEDLINE | ID: mdl-36977769

Adeno-associated virus (AAV) vector-based gene therapy is potentially curative for various genetic diseases; however, the development of a scalable purification method for full-genome AAV vectors remains crucial to increase productivity and reduce cost of GMP production. In this study, we developed a large-scale short-term purification method for functional full-genome AAV particles by using 2-step cesium chloride (CsCl) density-gradient ultracentrifugation with a zonal rotor. The 2-step CsCl method with a zonal rotor improves separation between empty and full-genome AAV particles, reducing the ultracentrifugation time (4-5 h) and increasing the AAV volume for purification. The highly purified full-genome AAV particles were confirmed by analytical ultracentrifugation (AUC), droplet digital PCR (ddPCR) in the whole region of the AAV vector genome, transduction efficiency in target cells, and transmission electronic microscopy (TEM). The high-purity AAV9 particles were obtained using culture supernatant during vector preparation rather than cell lysate. CsCl could be simply removed by a hydroxyapatite column. Interestingly, ddPCR analysis revealed that "empty" AAV particles contain small fragments of the inverted terminal repeat (ITR), probably due to unexpected packaging of Rep-mediated ITR fragments. This large-scale functional AAV vector purification with ultracentrifugation would be effective for gene therapy.


Dependovirus , Genetic Vectors , Ultracentrifugation , Dependovirus/genetics
2.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article En | MEDLINE | ID: mdl-35163475

Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.


Extracellular Vesicles/virology , Muscular Dystrophy, Duchenne/therapy , Satellite Cells, Skeletal Muscle/metabolism , Sphingomyelin Phosphodiesterase/genetics , Animals , Cell-Free Nucleic Acids/genetics , Dependovirus/genetics , Extracellular Vesicles/genetics , Extracellular Vesicles/transplantation , Genetic Therapy , Genetic Vectors , Humans , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/immunology , Transduction, Genetic
3.
Calcif Tissue Int ; 106(6): 665-677, 2020 06.
Article En | MEDLINE | ID: mdl-32076747

Hypophosphatasia (HPP) is a systemic skeletal disease caused by mutations in the gene encoding tissue-nonspecific alkaline phosphatase (TNALP). We recently reported that survival of HPP model mice can be prolonged using an adeno-associated virus (AAV) vector expressing bone-targeted TNALP with deca-aspartate at the C terminus (TNALP-D10); however, abnormal bone structure and hypomineralization remained in the treated mice. Here, to develop a more effective and clinically applicable approach, we assessed whether transfection with TNALP-D10 expressing virus vector at a higher dose than previously used would ameliorate bone structure defects. We constructed a self-complementary AAV8 vector expressing TNALP driven by the chicken beta-actin (CBA) promoter (scAAV8-CB-TNALP-D10). The vector was injected into both quadriceps femoris muscles of newborn HPP mice at a dose of 4.5 × 1012 vector genome (v.g.)/body, resulting in 20 U/mL of serum ALP activity. The 4.5 × 1012 v.g./body-treated HPP mice grew normally and displayed improved bone structure at the knee joints in X-ray images. Micro-CT analysis showed normal trabecular bone structure and mineralization. The mechanical properties of the femur were also recovered. Histological analysis of the femurs demonstrated that ALP replacement levels were sufficient to promote normal, growth plate cartilage arrangement. These results suggest that AAV vector-mediated high-dose TNALP-D10 therapy is a promising option for improving the quality of life (QOL) of patients with the infantile form of HPP.


Alkaline Phosphatase/genetics , Cancellous Bone/pathology , Hypophosphatasia/therapy , Animals , Dependovirus , Disease Models, Animal , Genetic Therapy , Genetic Vectors , Mice , Quality of Life
4.
Hum Gene Ther Methods ; 30(4): 137-143, 2019 08.
Article En | MEDLINE | ID: mdl-31317781

Recombinant adeno-associated virus (rAAV) is a promising gene delivery vehicle that has been approved as a gene therapy drug for some genetic disorders, and is being evaluated in clinical trials. To further promote clinical research under the Food and Drug Administration Investigational New Drug application, the stability of rAAV must be assessed under various conditions. However, there is scant data concerning the stability of a variety of rAAV serotypes. We hypothesized that the difference of capsid structure causes differences in stability. To investigate this hypothesis, rAAV serotypes (rAAV1, rAAV2, rAAV8, and rAAV9) were exposed to diluents and various environmental conditions, including ultraviolet (UV) irradiation, 0.1 M sodium hydroxide (NaOH), 0.06% sodium hypochlorite (NaClO), tap water, and 70% ethanol (EtOH). The changes of the infectivity of the treated samples were assessed by transduction in HeLaRC32 cells as a criterion of stability. The infectivity between recombinant and wild-type AAV (wtAAV2) was also analyzed. The activity of all rAAV serotypes was weakened by UV irradiation and NaOH and NaClO exposure. Treatment for 10 days with tap water or 70% EtOH did not appreciably inactivate rAAV1, rAAV8, and rAAV9, but did affect the activity of rAAV2. Furthermore, the infectivity of rAAV2 did not surpass wtAAV2 infectivity. The results will be important for clinical studies for gene therapy using rAAV.


Dependovirus , Genetic Vectors , Dependovirus/drug effects , Dependovirus/genetics , Dependovirus/pathogenicity , Dependovirus/radiation effects , Genetic Therapy , HEK293 Cells , Humans , Sodium Hydroxide/pharmacology , Sodium Hypochlorite/pharmacology , Ultraviolet Rays , Virus Inactivation/drug effects , Virus Inactivation/radiation effects , Water/pharmacology
5.
Mol Ther Methods Clin Dev ; 11: 180-190, 2018 Dec 14.
Article En | MEDLINE | ID: mdl-30533449

Recombinant adeno-associated virus serotype 9 (rAAV9) can specifically transduce muscle and neuronal tissues; thus, rAAV9 can potentially be used in gene therapy. However, rAAV9 is the most challenging rAAV serotype to purify. Traditionally, rAAV9 has been purified by ultracentrifugation, which is not scalable. We recently described a chromatographic purification protocol for rAAV1; this protocol can achieve scalable purifications. In this study, we attempted to optimize this protocol for purifying rAAV9 preparations, and we developed a novel, effective method for high-yield purification of rAAV9 using quaternary ammonium anion exchangers and size-exclusion chromatography. The final purified rAAV9 contained mainly three capsid proteins, as observed by SDS-PAGE. Furthermore, negative-stain electron microscopy demonstrated that 96.1% ± 1.1% of rAAV9 particles carried the viral genome containing the EGFP transgene, indicating that impurities and empty capsids can be eliminated with our purification protocol. The final rAAV9 titer obtained by our protocol totaled 2.5 ± 0.4 × 1015 viral genomes produced from ∼3.2 × 109 HEK293EB cells. We confirmed that our protocol can also be applied to purify other varied AAV genome constructs. Our protocol can scale up production of pure rAAV9, in compliance with current good manufacturing practice, for clinical applications in human gene therapy.

6.
Mol Vis ; 22: 816-26, 2016.
Article En | MEDLINE | ID: mdl-27440998

PURPOSE: We examined the neuroprotective effects of exogenous brain-derived neurotrophic factor (BDNF), which provides protection to retinal ganglion cells (RGCs) in rodents, in a model of transient intraocular pressure (IOP) elevation using a mutant (triple Y-F) self-complementary adeno-associated virus type 2 vector encoding BDNF (tm-scAAV2-BDNF). METHODS: The tm-scAAV2-BDNF or control vector encoding green fluorescent protein (GFP; tm-scAAV2-GFP) was intravitreally administered to rats, which were then divided into four groups: control, ischemia/reperfusion (I/R) injury only, I/R injury with tm-scAAV2-GFP, and tm-scAAV2-BDNF. I/R injury was then induced by transiently increasing IOP, after which the rats were euthanized to measure the inner retinal thickness and cell counts in the RGC layer. RESULTS: Intravitreous injection of tm-scAAV2-BDNF resulted in high levels of BDNF expression in the neural retina. Histological analysis showed that the inner retinal thickness and cell numbers in the RGC layer were preserved after transient IOP elevation in eyes treated with tm-scAAV2-BDNF but not in the other I/R groups. Significantly reduced glial fibrillary acidic protein (GFAP) immunostaining after I/R injury in the rats that received tm-scAAV2-BDNF indicated reduced retinal stress, and electroretinogram (ERG) analysis confirmed preservation of retinal function in the tm-scAAV2-BDNF group. CONCLUSIONS: These results demonstrate the feasibility and effectiveness of neuroprotective gene therapy using tm-scAAV2-BDNF to protect the inner retina from transiently high intraocular pressure. An in vivo gene therapeutic approach to the clinical management of retinal diseases in conditions such as glaucoma, retinal artery occlusion, hypertensive retinopathy, and diabetic retinopathy thus appears feasible.


Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/therapeutic use , Dependovirus/metabolism , Intraocular Pressure , Mutation/genetics , Tyrosine/genetics , Animals , Cell Count , Disease Models, Animal , Electroretinography , Glial Fibrillary Acidic Protein/metabolism , Green Fluorescent Proteins/metabolism , Humans , Rats, Sprague-Dawley , Retina/injuries , Retina/pathology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Transduction, Genetic
7.
Mol Ther Methods Clin Dev ; 3: 15058, 2016.
Article En | MEDLINE | ID: mdl-26913289

Recombinant adeno-associated virus (rAAV) is an attractive tool for gene transfer and shows potential for use in human gene therapies. The current methods for the production and purification of rAAV from the transfected cell lysate are mainly based on cesium chloride and iodixanol density ultracentrifugation, although those are not scalable. Meanwhile, chromatography-based systems are more scalable. Therefore, in this study, we developed a novel method for the production and purification of rAAV serotype 1 (rAAV1) from serum-free culture supernatant based on ion-exchange and gel-filtration chromatography to obtain highly purified products with an ultracentrifugation-free technique towards Good Manufacturing Practice (GMP) production. The purified rAAV1 displayed three clear and sharp bands (VP1, VP2, and VP3) following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and more than 90% of rAAV1 particles contained fully packaged viral genomes according to negative-stain electron micrographic analysis. Consequently, the resultant genomic titer of the purified rAAV1 was 3.63 × 10(13) v.g./ml (the total titer was 4.17 × 10(13) v.g.) from the 4 × 10(9) HEK293 cells. This novel chromatography-based method will facilitate scale-up of manufacturing for clinical applications in gene therapy.

8.
Mol Ther Methods Clin Dev ; 3: 15059, 2016.
Article En | MEDLINE | ID: mdl-26904710

Hypophosphatasia (HPP) is an inherited disease caused by genetic mutations in the gene encoding tissue-nonspecific alkaline phosphatase (TNALP). This results in defects in bone and tooth mineralization. We recently demonstrated that TNALP-deficient (Akp2 (-/-) ) mice, which mimic the phenotype of the severe infantile form of HPP, can be treated by intravenous injection of a recombinant adeno-associated virus (rAAV) expressing bone-targeted TNALP with deca-aspartates at the C-terminus (TNALP-D10) driven by the tissue-nonspecific CAG promoter. To develop a safer and more clinically applicable transduction strategy for HPP gene therapy, we constructed a self-complementary type 8 AAV (scAAV8) vector that expresses TNALP-D10 via the muscle creatine kinase (MCK) promoter (scAAV8-MCK-TNALP-D10) and examined the efficacy of muscle-directed gene therapy. When scAAV8-MCK-TNALP-D10 was injected into the bilateral quadriceps of neonatal Akp2 (-/-) mice, the treated mice grew well and survived for more than 3 months, with a healthy appearance and normal locomotion. Improved bone architecture, but limited elongation of the long bone, was demonstrated on X-ray images. Micro-CT analysis showed hypomineralization and abnormal architecture of the trabecular bone in the epiphysis. These results suggest that rAAV-mediated, muscle-specific expression of TNALP-D10 represents a safe and practical option to treat the severe infantile form of HPP.

9.
Sci Rep ; 5: 13104, 2015 Aug 18.
Article En | MEDLINE | ID: mdl-26283284

Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by a functional deficiency in human arylsulfatase A (hASA). We recently reported that ependymal cells and the choroid plexus are selectively transduced by intracerebroventricular (ICV) injection of adeno-associated virus serotype 1 (AAV1) vector and serve as a biological reservoir for the secretion of lysosomal enzymes into the cerebrospinal fluid (CSF). In the present study, we examined the feasibility of this AAV-mediated gene therapy to treat MLD model mice. Preliminary experiments showed that the hASA level in the CSF after ICV injection of self-complementary (sc) AAV1 was much higher than in mice injected with single-stranded AAV1 or scAAV9. However, when 18-week-old MLD mice were treated with ICV injection of scAAV1, the concentration of hASA in the CSF gradually decreased and was not detectable at 12 weeks after injection, probably due to the development of anti-hASA antibodies. As a result, the sulfatide levels in brain tissues of treated MLD mice were only slightly reduced compared with those of untreated MLD mice. These results suggest that this approach is potentially promising for treating MLD, but that controlling the immune response appears to be crucial for long-term expression of therapeutic proteins in the CSF.


Adenoviridae/genetics , Cerebroside-Sulfatase/administration & dosage , Cerebrospinal Fluid/metabolism , Genetic Therapy/methods , Leukodystrophy, Metachromatic/enzymology , Leukodystrophy, Metachromatic/therapy , Animals , Cerebroside-Sulfatase/genetics , Enzyme Replacement Therapy/methods , Genetic Vectors/genetics , Injections, Intraventricular , Leukodystrophy, Metachromatic/cerebrospinal fluid , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Treatment Outcome
10.
Sci Rep ; 4: 5506, 2014 Jul 01.
Article En | MEDLINE | ID: mdl-24981028

Enzyme replacement via the cerebrospinal fluid (CSF) has been shown to ameliorate neurological symptoms in model animals with neuropathic metabolic disorders. Gene therapy via the CSF offers a means to achieve a long-term sustainable supply of therapeutic proteins within the central nervous system (CNS) by setting up a continuous source of transgenic products. In the present study, a serotype 1 adeno-associated virus (AAV1) vector was injected into a lateral cerebral ventricle in adult mice to transduce the gene encoding human lysosomal enzyme arylsulfatase A (hASA) into the cells of the CNS. Widespread transduction and stable expression of hASA in the choroid plexus and ependymal cells was observed throughout the ventricles for more than 1 year after vector injection. Although humoral immunity to hASA developed after 6 weeks, which diminished the hASA levels detected in CSF from AAV1-injected mice, hASA levels in CSF were maintained for at least 12 weeks when the mice were tolerized to hASA prior of vector injection. Our results suggest that the cells lining the ventricles could potentially serve as a biological reservoir for long-term continuous secretion of lysosomal enzymes into the CSF following intracerebroventricular injection of an AAV1 vector.


Adenoviridae/genetics , Cerebroside-Sulfatase/cerebrospinal fluid , Cerebroside-Sulfatase/genetics , Ependyma/physiology , Gene Targeting/methods , Genetic Vectors/genetics , Animals , Ependyma/cytology , Injections, Intraventricular , Longitudinal Studies , Mice , Mice, Inbred C57BL , Transfection/methods
11.
Mol Ther ; 22(2): 409-419, 2014 Feb.
Article En | MEDLINE | ID: mdl-24322332

Gene therapy for neuropathic pain requires efficient gene delivery to both central and peripheral nervous systems. We previously showed that an adenoassociated virus serotype 9 (AAV9) vector expressing short-hairpin RNA (shRNA) could suppress target molecule expression in the dorsal root ganglia (DRG) and spinal cord upon intrathecal injection. To evaluate the therapeutic potential of this approach, we constructed an AAV9 vector encoding shRNA against vanilloid receptor 1 (TRPV1), which is an important target gene for acute pain, but its role in chronic neuropathic pain remains unclear. We intrathecally injected it into the subarachnoid space at the upper lumbar spine of mice 3 weeks after spared nerve injury (SNI). Delivered shTRPV1 effectively suppressed mRNA and protein expression of TRPV1 in the DRG and spinal cord, and it attenuated nerve injury-induced thermal allodynia 10-28 days after treatment. Our study provides important evidence for the contribution of TRPV1 to thermal hypersensitivity in neuropathic pain and thus establishes intrathecal AAV9-mediated gene delivery as an investigative and potentially therapeutic platform for the nervous system.


Dependovirus/genetics , Genetic Vectors/genetics , Hyperalgesia/genetics , RNA, Small Interfering/genetics , TRPV Cation Channels/genetics , Animals , Base Sequence , Dependovirus/immunology , Disease Models, Animal , Female , Ganglia, Spinal/metabolism , Gene Expression , Gene Order , Gene Silencing , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors/administration & dosage , Genetic Vectors/immunology , Hyperalgesia/therapy , Injections, Spinal , Mice , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/therapy , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Spinal Cord/metabolism , TRPV Cation Channels/chemistry , TRPV Cation Channels/metabolism
12.
Mol Pain ; 9: 36, 2013 Jul 18.
Article En | MEDLINE | ID: mdl-23866078

BACKGROUND: There is considerable interest in inducing RNA interference (RNAi) in neurons to study gene function and identify new targets for disease intervention. Although short interfering RNAs (siRNAs) have been used to silence genes in neurons, in vivo delivery of RNAi remains a major challenge, especially by systemic administration. We have developed a highly efficient method for in vivo gene silencing in dorsal root ganglia (DRG) by using short hairpin RNA-expressing single-stranded adeno-associated virus 9 (ssAAV9-shRNA). RESULTS: Intraperitoneal administration of ssAAV9-shRNA to neonatal mice resulted in highly effective and specific silencing of a target gene in DRG. We observed an approximately 80% reduction in target mRNA in the DRG, and 74.7% suppression of the protein was confirmed by Western blot analysis. There were no major side effects, and the suppression effect lasted for more than three months after the injection of ssAAV9-shRNA. CONCLUSIONS: Although we previously showed substantial inhibition of target gene expression in DRG via intrathecal ssAAV9-shRNA administration, here we succeeded in inhibiting target gene expression in DRG neurons via intraperitoneal injection of ssAAV9-shRNA. AAV9-mediated delivery of shRNA will pave the way for creating animal models for investigating the molecular biology of the mechanisms of pain and sensory ganglionopathies.


Dependovirus/genetics , Ganglia, Spinal/metabolism , RNA, Small Interfering/genetics , Animals , Cell Line , Dependovirus/metabolism , Gene Expression , Gene Silencing , Genetic Vectors/genetics , Genetic Vectors/metabolism , Injections, Intraperitoneal , Mice , Mice, Inbred ICR , Models, Animal , Neurons/metabolism , Pain/genetics , Pain/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1
13.
Hum Gene Ther Methods ; 23(2): 119-27, 2012 Apr.
Article En | MEDLINE | ID: mdl-22583159

Gene therapy for neurological diseases requires efficient gene delivery to target tissues in the central and peripheral nervous systems. Although adeno-associated virus is one of the most promising vectors for clinical use against neurological diseases, it is difficult to get it across the blood-brain barrier. A clinically practical approach to using a vector based on adeno-associated virus to decrease the expression of a specific gene in both the central and the peripheral nervous system has yet to be established. Here, we analyzed whether upper lumbar intrathecal administration of a therapeutic vector incorporating adeno-associated virus and short-hairpin RNA against superoxide dismutase-1 bypassed the blood-brain barrier to target the spinal cord and dorsal root ganglia. The therapeutic vector effectively suppressed mRNA and protein expression of endogenous superoxide dismutase-1 in the lumbar spinal cord and dorsal root ganglia. Moreover, neither neurological side effects nor toxicity due to the incorporated short-hairpin RNA occurred after the injection. We propose that this approach could be developed into novel therapies for motor neuron diseases and chronic pain conditions, such as complex regional pain syndrome, through silencing of the genes responsible for pathologies in the spinal cord and dorsal root ganglia.


Dependovirus/genetics , Ganglia, Spinal/metabolism , Gene Expression Regulation/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , RNA, Small Interfering/genetics , Spinal Cord/metabolism , Superoxide Dismutase/metabolism , Animals , Blotting, Northern , Blotting, Western , DNA Primers/genetics , Female , Genetic Vectors/administration & dosage , Hot Temperature , Injections, Spinal , Mice , Mice, Inbred ICR , Physical Stimulation , Real-Time Polymerase Chain Reaction , Rotarod Performance Test , Superoxide Dismutase/genetics , Touch/physiology
14.
Brain ; 135(Pt 3): 833-46, 2012 Mar.
Article En | MEDLINE | ID: mdl-22252998

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive motoneuron loss. Redistribution of transactive response deoxyribonucleic acid-binding protein 43 from the nucleus to the cytoplasm and the presence of cystatin C-positive Bunina bodies are considered pathological hallmarks of amyotrophic lateral sclerosis, but their significance has not been fully elucidated. Since all reported rodent transgenic models using wild-type transactive response deoxyribonucleic acid-binding protein 43 failed to recapitulate these features, we expected a species difference and aimed to make a non-human primate model of amyotrophic lateral sclerosis. We overexpressed wild-type human transactive response deoxyribonucleic acid-binding protein 43 in spinal cords of cynomolgus monkeys and rats by injecting adeno-associated virus vector into the cervical cord, and examined the phenotype using behavioural, electrophysiological, neuropathological and biochemical analyses. These monkeys developed progressive motor weakness and muscle atrophy with fasciculation in distal hand muscles first. They also showed regional cytoplasmic transactive response deoxyribonucleic acid-binding protein 43 mislocalization with loss of nuclear transactive response deoxyribonucleic acid-binding protein 43 staining in the lateral nuclear group of spinal cord innervating distal hand muscles and cystatin C-positive cytoplasmic aggregates, reminiscent of the spinal cord pathology of patients with amyotrophic lateral sclerosis. Transactive response deoxyribonucleic acid-binding protein 43 mislocalization was an early or presymptomatic event and was later associated with neuron loss. These findings suggest that the transactive response deoxyribonucleic acid-binding protein 43 mislocalization leads to α-motoneuron degeneration. Furthermore, truncation of transactive response deoxyribonucleic acid-binding protein 43 was not a prerequisite for motoneuronal degeneration, and phosphorylation of transactive response deoxyribonucleic acid-binding protein 43 occurred after degeneration had begun. In contrast, similarly prepared rat models expressed transactive response deoxyribonucleic acid-binding protein 43 only in the nucleus of motoneurons. There is thus a species difference in transactive response deoxyribonucleic acid-binding protein 43 pathology, and our monkey model recapitulates amyotrophic lateral sclerosis pathology to a greater extent than rodent models, providing a valuable tool for studying the pathogenesis of sporadic amyotrophic lateral sclerosis.


Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Cytoplasm/metabolism , DNA-Binding Proteins/metabolism , Animals , Atrophy , Behavior, Animal/physiology , Blotting, Western , Cystatin C/metabolism , Dependovirus , Disease Models, Animal , Electromyography , Electrophysiological Phenomena , Genetic Vectors , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Motor Neurons/metabolism , Muscle Weakness/genetics , Muscle Weakness/pathology , Neurites/pathology , Rats , Rats, Inbred F344 , Real-Time Polymerase Chain Reaction , Species Specificity , Spinal Cord/metabolism , Stereotaxic Techniques
15.
J Nippon Med Sch ; 79(6): 394-402, 2012.
Article En | MEDLINE | ID: mdl-23291836

A variety of gene transfer strategies have been developed to treat inherited, degenerative, and acquired diseases. Among the different vector systems developed so far, recombinant adeno-associated viral (AAV) vectors have shown notable benefits, including prolonged gene expression, transduction of both dividing and nondividing cells, and a lack of pathogenicity caused by wild-type infections. Thanks to these features, the use of AAV vectors as a gene transfer tool has increased dramatically during the past several years, and several recent clinical trials have used AAV vectors. However, AAV vectors are more complicated to produce than are other viral vectors. With steady advances toward clinical application, much effort has been made to isolate novel AAV serotypes and to develop methods for their efficient, scalable, and versatile production and purification. Here we review state of the art methods for AAV vector production and purification, which we have refined in our laboratory.


Dependovirus/genetics , Genetic Vectors/genetics , Transduction, Genetic/methods , Animals , Dependovirus/classification , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reproducibility of Results , Serotyping
16.
J Neurosci Methods ; 201(1): 55-60, 2011 Sep 30.
Article En | MEDLINE | ID: mdl-21827789

Adeno-associated viral (AAV) vector is a non-pathogenic vehicle that is suitable for the delivery of foreign genes into non-dividing neuronal cells. This vector has been utilized for in vivo neurological research and in clinical trials of gene therapy for neurodegenerative disorders. Viral vector-mediated gene delivery has the limitation that progressive changes in cellular phenotype cannot be monitored in living animals. To visualize living neurons transduced with foreign genes in vitro, we used cultured mesencephalic tissue harboring living dopaminergic (DA) neurons and examined cellular tropism of serotype-1 and serotype-2 AAV vectors in a culture system. The viability of DA neurons was evaluated using transgenic mice carrying enhanced green fluorescent protein under the control of the rat tyrosine hydroxylase (TH) promoter, which enables the visualization of living DA cells in the substantia nigra. Apoptosis of a subset of neuronal cells was noted within one day of culture. After 7 days, the serotype-1 AAV vector had successfully delivered the foreign gene into neurons and astrocytes, and serotype-2 AAV vector was able to transduce TH-positive DA neurons efficiently. Our method should be useful for in vitro investigations of pathological changes in DA neurons following transduction with foreign genes.


Dependovirus/genetics , Genetic Vectors/genetics , Mesencephalon/physiology , Transduction, Genetic/methods , Animals , Animals, Newborn , Genetic Vectors/administration & dosage , Mesencephalon/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Culture Techniques
17.
Cancer Invest ; 29(5): 353-9, 2011 Jun.
Article En | MEDLINE | ID: mdl-21599511

To determine the adeno-associated virus (AAV) serotype that most efficiently mediates muscle expression of antiangiogenic proteins, we injected four different serotype (1, 2, 7, and 8) AAV vectors encoding mouse endostatin (mEnd) or human soluble FLK-1 (hsFLK-1) into a quadriceps muscle of C57BL/6 mice. The highest plasma levels of therapeutic protein were observed in AAV8-injected mice (8 > 7 > 1 > 2). Sustained expression of mEnd was detected for 6 months, whereas concentrations of hsFLK-1 declined to the background level within 2 weeks caused by neutralizing anti-hsFLK-1 antibody. These data demonstrate that AAV8 (mEnd) serotype is the most efficient mediator for protein expression.


Dependovirus/metabolism , Endostatins/biosynthesis , Gene Transfer Techniques , Genetic Vectors , Quadriceps Muscle/metabolism , Vascular Endothelial Growth Factor Receptor-2/biosynthesis , Animals , Antibodies/blood , Creatine Kinase, MM Form/genetics , Dependovirus/classification , Dependovirus/genetics , Endostatins/blood , Endostatins/genetics , Enzyme-Linked Immunosorbent Assay , HeLa Cells , Humans , Injections, Intramuscular , Male , Mice , Mice, Inbred C57BL , Mice, SCID , Promoter Regions, Genetic , Serotyping , Time Factors , Transfection , Vascular Endothelial Growth Factor Receptor-2/blood , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/immunology
18.
Brain Res ; 1389: 19-26, 2011 May 10.
Article En | MEDLINE | ID: mdl-21397590

Central nervous system (CNS) disorders are important targets for gene therapy; however, delivery of therapeutic proteins and/or genes to the brain remains a major challenge due to the difficulty of efficiently delivering viral vectors across the blood-brain barrier (BBB). In the present work, we tested the ability of several single-stranded adeno-associated viral (ssAAV) serotypes to deliver transgenes to the brain and spinal cord in neonatal mice. We injected ssAAV vectors encoding GFP (serotype-1, -8, -9 and -10: 1.5×10(11) vector genomes each) into the jugular vein of neonatal mice and assessed GFP expression immunohistochemically. Strong GFP signals were detected in both the brain and spinal cord after injection of any of these serotypes. ssAAV serotype-9 mediated gene transfer was the most efficient. GFP expression was detected throughout the brain, including the cortex, cerebellum, olfactory bulb and brainstem and was sustained for at least 18months. Immunohistochemical staining showed that the GFP signals were detected in GFAP positive astrocytes, NeuN positive neurons, and Calbindin positive purkinje cells. Our data suggest that systemic neonatal injection of ssAAV is an effective strategy for delivering transgenes to target neuronal systems that are not accessible to viral vectors in adult animals. These vectors should prove highly useful for efficient and long-term overexpression or downregulation of genes in CNS and spinal cord and could be a useful means of treating genetic neurological diseases.


Blood-Brain Barrier/physiology , Dependovirus/genetics , Gene Transfer Techniques , Genetic Therapy/methods , Motor Neurons/physiology , Animals , Animals, Newborn , Genetic Vectors/genetics , Green Fluorescent Proteins/genetics , Heart/physiology , Immunohistochemistry , Liver/physiology , Mice , Mice, Inbred C57BL , Muscle, Skeletal/physiology , Reverse Transcriptase Polymerase Chain Reaction
19.
Biochem Biophys Res Commun ; 405(2): 204-9, 2011 Feb 11.
Article En | MEDLINE | ID: mdl-21219850

Systemic injections of AAV vectors generally transduce to the liver more effectively than to cardiac and skeletal muscles. The short hairpin RNA (shRNA)-expressing AAV9 (shRNA-AAV9) can also reduce target gene expression in the liver, but not enough in cardiac or skeletal muscles. Higher doses of shRNA-AAV9 required for inhibiting target genes in cardiac and skeletal muscles often results in shRNA-related toxicity including microRNA oversaturation that can induce fetal liver failure. In this study, we injected high-dose shRNA-AAV9 to neonates and efficiently silenced genes in cardiac and skeletal muscles without inducing liver toxicity. This is because AAV is most likely diluted or degraded in the liver than in cardiac or skeletal muscle during cell division after birth. We report that this systemically injected shRNA-AAV method does not induce any major side effects, such as liver dysfunction, and the dose of shRNA-AAV is sufficient for gene silencing in skeletal and cardiac muscle tissues. This novel method may be useful for generating gene knockdown in skeletal and cardiac mouse tissues, thus providing mouse models useful for analyzing diseases caused by loss-of-function of target genes.


Gene Knockdown Techniques/methods , Muscle, Skeletal/metabolism , Myocardium/metabolism , RNA Interference , RNA, Small Interfering/genetics , Animals , Dependovirus , Genetic Vectors/administration & dosage , HEK293 Cells , Humans , Injections, Intraperitoneal , Mice , Mice, Inbred ICR , Superoxide Dismutase/antagonists & inhibitors , Superoxide Dismutase/genetics , Superoxide Dismutase-1
20.
Hum Gene Ther ; 22(1): 27-34, 2011 Jan.
Article En | MEDLINE | ID: mdl-20649474

Gene therapy for dominantly inherited diseases with small interfering RNA (siRNA) requires mutant allele-specific suppression when genes in which mutation causes disease normally have an important role. We previously proposed a strategy for selective suppression of mutant alleles; both mutant and wild-type alleles are inhibited by most effective siRNA, and wild-type protein is restored using mRNA mutated to be resistant to the siRNA. Here, to prove the principle of this strategy in vivo, we applied it to our previously reported anti-copper/zinc superoxide dismutase (SOD1) short hairpin RNA (shRNA) transgenic (Tg) mice, in which the expression of the endogenous wild-type SOD1 gene was inhibited by more than 80%. These shRNA Tg mice showed hepatic lipid accumulation with mild liver dysfunction due to downregulation of endogenous wild-type SOD1. To rescue this side effect, we generated siRNA-resistant SOD1 Tg mice and crossed them with anti-SOD1 shRNA Tg mice, resulting in the disappearance of lipid accumulation in the liver. Furthermore, we also succeeded in mutant SOD1-specific gene suppression in the liver of SOD1(G93A) Tg mice, a model for amyotrophic lateral sclerosis, using intravenously administered viral vectors. Our method may prove useful for siRNA-based gene therapy for dominantly inherited diseases.


Genetic Therapy/methods , Liver/physiopathology , RNA Interference , RNA, Small Interfering/metabolism , Superoxide Dismutase/genetics , Alleles , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Genetic Vectors/genetics , Humans , Mice , Mice, Transgenic , Mutation , RNA, Messenger/genetics , Superoxide Dismutase-1 , Transfection
...