Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
FASEB J ; 36(2): e22123, 2022 02.
Article En | MEDLINE | ID: mdl-34972242

GABA is a major neurotransmitter in the mammalian central nervous system. Glutamate decarboxylase (GAD) synthesizes GABA from glutamate, and two isoforms of GAD, GAD65, and GAD67, are separately encoded by the Gad2 and Gad1 genes, respectively. The phenotypes differ in severity between GAD single isoform-deficient mice and rats. For example, GAD67 deficiency causes cleft palate and/or omphalocele in mice but not in rats. In this study, to further investigate the functional roles of GAD65 and/or GAD67 and to determine the contribution of these isoforms to GABA synthesis during development, we generated various kinds of GAD isoform(s)-deficient rats and characterized their phenotypes. The age of death was different among Gad mutant rat genotypes. In particular, all Gad1-/- ; Gad2-/- rats died at postnatal day 0 and showed little alveolar space in their lungs, suggesting that the cause of their death was respiratory failure. All Gad1-/- ; Gad2-/- rats and 18% of Gad1-/- ; Gad2+/- rats showed cleft palate. In contrast, none of the Gad mutant rats including Gad1-/- ; Gad2-/- rats, showed omphalocele. These results suggest that both rat GAD65 and GAD67 are involved in palate formation, while neither isoform is critical for abdominal wall formation. The GABA content in Gad1-/- ; Gad2-/- rat forebrains and retinas at embryonic day 20 was extremely low, indicating that almost all GABA was synthesized from glutamate by GADs in the perinatal period. The present study shows that Gad mutant rats are a good model for further defining the role of GABA during development.


Glutamate Decarboxylase/deficiency , Palate/embryology , Prosencephalon/embryology , Retina/embryology , Animals , Glutamate Decarboxylase/metabolism , Rats , Rats, Mutant Strains
2.
J Nutr Biochem ; 97: 108811, 2021 11.
Article En | MEDLINE | ID: mdl-34197915

Dysregulation of glucagon is associated with the pathophysiology of type 2 diabetes. We previously reported that postprandial hyperglucagonemia is more obvious than fasting hyperglucagonemia in type 2 diabetes patients. However, which nutrient stimulates glucagon secretion in the diabetic state and the underlying mechanism after nutrient intake are unclear. To answer these questions, we measured plasma glucagon levels in diabetic mice after oral administration of various nutrients. The effects of nutrients on glucagon secretion were assessed using islets isolated from diabetic mice and palmitate-treated islets. In addition, we analyzed the expression levels of branched chain amino acid (BCAA) catabolism-related enzymes and their metabolites in diabetic islets. We found that protein, but not carbohydrate or lipid, increased plasma glucagon levels in diabetic mice. Among amino acids, BCAAs, but not the other essential or nonessential amino acids, increased plasma glucagon levels. BCAAs also directly increased the intracellular calcium concentration in α cells. When BCAAs transport was suppressed by an inhibitor of system L-amino acid transporters, glucagon secretion was reduced even in the presence of BCAAs. We also found that the expression levels of BCAA catabolism-related enzymes and their metabolite contents were altered in diabetic islets and palmitate-treated islets compared to control islets, indicating disordered BCAA catabolism in diabetic islets. Furthermore, BCKDK inhibitor BT2 suppressed BCAA-induced hypersecretion of glucagon in diabetic islets and palmitate-treated islets. Taken together, postprandial hypersecretion of glucagon in the diabetic state is attributable to disordered BCAA catabolism in pancreatic islet cells.


Amino Acids, Branched-Chain/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucagon/metabolism , Islets of Langerhans/metabolism , Animals , Calcium/metabolism , Glucagon/blood , Male , Mice , Mice, Inbred C57BL , Palmitates/pharmacology , Postprandial Period
3.
Mol Brain ; 14(1): 5, 2021 01 07.
Article En | MEDLINE | ID: mdl-33413507

Reduced expression of glutamate decarboxylase 67 (GAD67), encoded by the Gad1 gene, is a consistent finding in postmortem brains of patients with several psychiatric disorders, including schizophrenia, bipolar disorder and major depressive disorder. The dysfunction of GAD67 in the brain is implicated in the pathophysiology of these psychiatric disorders; however, the neurobiological consequences of GAD67 dysfunction in mature brains are not fully understood because the homozygous Gad1 knockout is lethal in newborn mice. We hypothesized that the tetracycline-controlled gene expression/suppression system could be applied to develop global GAD67 knockdown mice that would survive into adulthood. In addition, GAD67 knockdown mice would provide new insights into the neurobiological impact of GAD67 dysfunction. Here, we developed Gad1tTA/STOP-tetO biallelic knock-in mice using Gad1STOP-tetO and Gad1tTA knock-in mice, and compared them with Gad1+/+ mice. The expression level of GAD67 protein in brains of Gad1tTA/STOP-tetO mice treated with doxycycline (Dox) was decreased by approximately 90%. The GABA content was also decreased in the brains of Dox-treated Gad1tTA/STOP-tetO mice. In the open-field test, Dox-treated Gad1tTA/STOP-tetO mice exhibited hyper-locomotor activity and decreased duration spent in the center region. In addition, acoustic startle responses were impaired in Dox-treated Gad1tTA/STOP-tetO mice. These results suggest that global reduction in GAD67 elicits emotional abnormalities in mice. These GAD67 knockdown mice will be useful for elucidating the neurobiological mechanisms of emotional abnormalities, such as anxiety symptoms associated with psychiatric disorders.


Emotions , Gene Knockdown Techniques , Glutamate Decarboxylase/metabolism , Animals , Animals, Newborn , Behavior, Animal/drug effects , Doxycycline/pharmacology , Glutamic Acid/metabolism , Homozygote , Mice , gamma-Aminobutyric Acid/metabolism
4.
Oncotarget ; 9(12): 10665-10680, 2018 Feb 13.
Article En | MEDLINE | ID: mdl-29535834

The identification of diagnostic and prognostic biomarkers from early lesions, measurable in liquid biopsies remains a major challenge, particularly in oncology. Fresh human material of high quality is required for biomarker discovery but is often not available when it is totally required for clinical pathology investigation. Hence, all OMICs studies are done on residual and less clinically relevant biological samples. Here after, we present an innovative, simple, and non-destructive, procedure named EXPEL that uses rapid, pressure-assisted, interstitial fluid extrusion, preserving the specimen for full routine clinical pathology investigation. In the meantime, the technique allows a comprehensive OMICs analysis (proteins, metabolites, miRNAs and DNA). As proof of concept, we have applied EXPEL on freshly collected human colorectal cancer and liver metastases tissues. We demonstrate that the procedure efficiently allows the extraction, within a few minutes, of a wide variety of biomolecules holding diagnostic and prognostic potential while keeping both tissue morphology and antigenicity unaltered. Our method enables, for the first time, both clinicians and scientists to explore identical clinical material regardless of its origin and size, which has a major positive impact on translation to the clinic.

5.
Oncogene ; 37(9): 1237-1250, 2018 03.
Article En | MEDLINE | ID: mdl-29242606

Cancer research is increasingly dependent of patient-derived xenograft model (PDX). However, a major point of concern regarding the PDX model remains the replacement of the human stroma with murine counterpart. In the present work we aimed at clarifying the significance of the human-to-murine stromal replacement for the fidelity of colorectal cancer (CRC) and liver metastasis (CRC-LM) PDX model. We have conducted a comparative metabolic analysis between 6 patient tumors and corresponding PDX across 4 generations. Metabolic signatures of cancer cells and stroma were measured separately by MALDI-imaging, while metabolite changes in entire tumors were quantified using mass spectrometry approach. Measurement of glucose metabolism was also conducted in vivo using [18F]-fluorodeoxyglucose (FDG) and positron emission tomography (PET). In CRC/CRC-LM PDX model, human stroma was entirely replaced at the second generation. Despite this change, MALDI-imaging demonstrated that the metabolic profiles of both stromal and cancer cells remained stable for at least four generations in comparison to the original patient material. On the tumor level, profiles of 86 water-soluble metabolites as well as 93 lipid mediators underlined the functional stability of the PDX model. In vivo PET measurement of glucose uptake (reflecting tumor glucose metabolism) supported the ex vivo observations. Our data show for the first time that CRC/CRC-LM PDX model maintains the functional stability at the metabolic level despite the early replacement of the human stroma by murine cells. The findings demonstrate that human cancer cells actively educate murine stromal cells during PDX development to adopt the human-like phenotype.


Cancer-Associated Fibroblasts/metabolism , Colorectal Neoplasms/metabolism , Disease Models, Animal , Glucose/metabolism , Liver Neoplasms/metabolism , Metabolome , Stromal Cells/metabolism , Animals , Cancer-Associated Fibroblasts/pathology , Cohort Studies , Colorectal Neoplasms/pathology , Female , Humans , Liver Neoplasms/secondary , Male , Mice , Mice, Inbred NOD , Mice, SCID , Phenotype , Stromal Cells/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Neurosci Lett ; 617: 232-5, 2016 Mar 23.
Article En | MEDLINE | ID: mdl-26917099

The Ca(2+)-dependent activator protein for secretion 1 (CAPS1) protein plays a regulatory role in the dense-core vesicle exocytosis pathway. To clarify the functions of this protein in the brain, we searched for novel interaction partners of CAPS1 by mass spectrometry. We identified a specific interaction of CAPS1 with septin family proteins. We also demonstrated that the C-terminal region of the CAPS1 protein binds to part of the deduced GTP-binding domain of septin proteins. It is possible that a tertiary complex of septin, CAPS, and syntaxin contributes to dense-core vesicle trafficking and exocytosis in neurons.


Brain/metabolism , Calcium-Binding Proteins/metabolism , Nerve Tissue Proteins/metabolism , Septins/metabolism , Animals , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Mice , Protein Binding , Protein Interaction Domains and Motifs
...