Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life Sci Space Res (Amst) ; 41: 52-55, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670652

RESUMEN

The health risk of staying in space is a well-known fact, and the radiation doses to the astronauts must be monitored. The Pille-ISS thermoluminescent dosimeter system is present on the International Space Station (ISS) since 2003. We present an analysis of 60000 data points over 19 years from the 90 min automatic measurements and show a 4-day-long segment of 15 min measurements. In the case of the 15 min we show that the mapping of the radiation environment for the orbit of the ISS is possible with the Pille system. From our results the dose rates inside the South Atlantic Anomaly (SAA) are at least 1 magnitude higher than outside. From the 90 min data, we select orbits passing through the SAA. A statistical correlation in the SAA between the ISS altitude and monthly mean dose rate is presented with the Spearman correlation value of ρSAA=0.56. The dose rate and the sunspot number show strong inverse Pearson correlation (R2=-0.90) at a given altitude.


Asunto(s)
Astronautas , Nave Espacial , Dosimetría Termoluminiscente , Nave Espacial/instrumentación , Dosimetría Termoluminiscente/instrumentación , Dosimetría Termoluminiscente/métodos , Humanos , Dosis de Radiación , Monitoreo de Radiación/instrumentación , Monitoreo de Radiación/métodos , Radiación Cósmica , Vuelo Espacial
2.
Radiat Prot Dosimetry ; 171(4): 453-462, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26503856

RESUMEN

Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research aeroplanes. However, there is only limited information about that between 15 and 30 km altitudes. In order to study the radiation environment in the stratosphere, an experiment was built by students from Hungarian universities that flew on board the BEXUS (Balloon Experiments for University Students) stratospheric balloon in Northern Sweden, from the ESRANGE Space Center. The main technical goals of the experiment were to test at the first time the TRITEL 3D silicon detector telescope system in close to space conditions and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TRITEL system to determine dosimetric and radiation quantities during the balloon flight and to intercompare the TRITEL and Pille results to provide a correction factor for the Pille measurements. To fulfil the scientific and technological objectives, several different dosimeter systems were included in the experiment: an advanced version of the TRITEL silicon detector telescope, Geiger-Müller (GM) counters and Pille thermoluminescent dosimeters. The float altitude of the BEXUS balloon was ∼28.6 km; the total flight time was ∼4 h. Measurement data from the active instruments were received in real time by the ground team during the mission. There were no failures in the operation of the system; everything worked as expected. This article presents the scientific goals and results in detail. From the TRITEL measurements, the linear energy transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined. Estimations for the uncertainty in the TRITEL measurements were given. The deposited energy spectra measured with the TRITEL instrument were compared with the count rates measured with the GM counters. The experiences and results gained in the frame of the project will be used in the evaluation of TRITEL data from measurements on board the International Space Station. As an outlook a short overview is given of the planned rocket radiation experiments based on the system used in the BEXUS programme.


Asunto(s)
Radiación Cósmica , Monitoreo de Radiación/métodos , Nave Espacial/instrumentación , Dosimetría Termoluminiscente/métodos , Aeronaves , Humanos , Transferencia Lineal de Energía , Distribución Normal , Dosis de Radiación , Radiometría , Silicio , Actividad Solar , Vuelo Espacial , Telescopios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA