Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 293(33): 12653-12662, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120148

RESUMEN

Defects in protein glycosylation can have a dramatic impact on eukaryotic cells and is associated with mental and developmental pathologies in humans. The studies outlined below illustrate how a basic biochemical problem in the mechanisms of protein glycosylation, specifically substrate transporters of nucleotide sugars, including ATP and 3'-phosphoadenyl-5'-phosphosulfate (PAPS), in the membrane of the Golgi apparatus and endoplasmic reticulum, expanded into diverse biological systems from mammals, including humans, to yeast, roundworms, and protozoa. Using these diverse model systems allowed my colleagues and me to answer fundamental biological questions that enabled us to formulate far-reaching hypotheses and expanded our knowledge of human diseases caused by malfunctions in the metabolic processes involved.


Asunto(s)
Adenosina Trifosfato/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Nucleótidos/metabolismo , Azúcares/metabolismo , Animales , Transporte Biológico , Humanos
2.
PLoS Pathog ; 9(5): e1003331, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658519

RESUMEN

Toxoplasma gondii is an intracellular parasite that transitions from acute infection to a chronic infective state in its intermediate host via encystation, which enables the parasite to evade immune detection and clearance. It is widely accepted that the tissue cyst perimeter is highly and specifically decorated with glycan modifications; however, the role of these modifications in the establishment and persistence of chronic infection has not been investigated. Here we identify and biochemically and biologically characterize a Toxoplasma nucleotide-sugar transporter (TgNST1) that is required for cyst wall glycosylation. Toxoplasma strains deleted for the TgNST1 gene (Δnst1) form cyst-like structures in vitro but no longer interact with lectins, suggesting that Δnst1 strains are deficient in the transport and use of sugars for the biosynthesis of cyst-wall structures. In vivo infection experiments demonstrate that the lack of TgNST1 activity does not detectably impact the acute (tachyzoite) stages of an infection or tropism of the parasite for the brain but that Δnst1 parasites are severely defective in persistence during the chronic stages of the infection. These results demonstrate for the first time the critical role of parasite glycoconjugates in the persistence of Toxoplasma tissue cysts.


Asunto(s)
Glicoproteínas/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis/metabolismo , Animales , Femenino , Eliminación de Gen , Glicoproteínas/genética , Glicosilación , Ratones , Proteínas de Transporte de Nucleótidos/genética , Proteínas Protozoarias/genética , Toxoplasma/genética , Toxoplasmosis/genética , Toxoplasmosis/patología
3.
J Biol Chem ; 288(15): 10599-615, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23443657

RESUMEN

Nucleotide sugar transporters (NSTs) are indispensible for the biosynthesis of glycoproteins by providing the nucleotide sugars needed for glycosylation in the lumen of the Golgi apparatus. Mutations in NST genes cause human and cattle diseases and impaired cell walls of yeast and fungi. Information regarding their function in the protozoan parasite, Trypanosoma brucei, a causative agent of African trypanosomiasis, is unknown. Here, we characterized the substrate specificities of four NSTs, TbNST1-4, which are expressed in both the insect procyclic form (PCF) and mammalian bloodstream form (BSF) stages. TbNST1/2 transports UDP-Gal/UDP-GlcNAc, TbNST3 transports GDP-Man, and TbNST4 transports UDP-GlcNAc, UDP-GalNAc, and GDP-Man. TbNST4 is the first NST shown to transport both pyrimidine and purine nucleotide sugars and is demonstrated here to be localized at the Golgi apparatus. RNAi-mediated silencing of TbNST4 in the procyclic form caused underglycosylated surface glycoprotein EP-procyclin. Similarly, defective glycosylation of the variant surface glycoprotein (VSG221) as well as the lysosomal membrane protein p67 was observed in Δtbnst4 BSF T. brucei. Relative infectivity analysis showed that defects in glycosylation of the surface coat resulting from tbnst4 deletion were insufficient to impact the ability of this parasite to infect mice. Notably, the fact that inactivation of a single NST gene results in measurable defects in surface glycoproteins in different life cycle stages of the parasite highlights the essential role of NST(s) in glycosylation of T. brucei. Thus, results presented in this study provide a framework for conducting functional analyses of other NSTs identified in T. brucei.


Asunto(s)
Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales , Transporte Biológico Activo/fisiología , Bovinos , Glicosilación , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Lisosomas/genética , Lisosomas/metabolismo , Ratones , Proteínas de Transporte de Monosacáridos/genética , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/genética , Tripanosomiasis Africana/metabolismo
4.
Glycoconj J ; 30(1): 5-10, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22527830

RESUMEN

Nucleotide sugar transporters play critical roles in glycosylation of proteins, lipids and proteoglycans, which are essential for organogenesis, development, mammalian cellular immunity and pathogenicity of human pathogenic agents. Functional deficiencies of these transporters result in global defects of glycoconjugates, which in turn lead to a diversity of biochemical, physiological and pathological phenotypes. In this short review, we will highlight human and bovine diseases caused by mutations of these transporters.


Asunto(s)
Transporte Biológico/genética , Aparato de Golgi , Nucleótidos , Secuencia de Aminoácidos/genética , Animales , Metabolismo de los Hidratos de Carbono , Bovinos , Glicosilación , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Humanos , Proteínas de Transporte de Membrana/metabolismo , Mutación , Nucleótidos/genética , Nucleótidos/metabolismo , Fenotipo
6.
J Biol Chem ; 285(32): 24600-8, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20529871

RESUMEN

Nucleotide sugar transporters of the Golgi apparatus play an essential role in the glycosylation of proteins, lipids, and proteoglycans. Down-regulation of expression of the transporters for CMP-sialic acid, GDP-fucose, or both unexpectedly resulted in accumulation of glycoconjugates in the Golgi apparatus rather than in the plasma membrane. Pulse-chase experiments with radiolabeled sugars and amino acids showed decreased synthesis and secretion of both nonglycoproteins and glycoproteins. Further studies revealed that the above silencing induced endoplasmic reticulum stress and inhibited protein translation initiation. Together these results suggest that global inhibition of Golgi apparatus glycosylation may lead to important secondary metabolic changes, unrelated to glycosylation.


Asunto(s)
Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Aparato de Golgi/metabolismo , Animales , Transporte Biológico , Células CHO , Cricetinae , Cricetulus , Glicosilación , Células HeLa , Humanos , Microscopía Confocal/métodos , Modelos Biológicos , Biosíntesis de Proteínas , ARN Interferente Pequeño/metabolismo
7.
Semin Cell Dev Biol ; 21(6): 600-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20144721

RESUMEN

The Golgi apparatus membrane of all eukaryotes has nucleotide sugar transporters which play essential roles in the glycosylation of glycoproteins, proteoglycans and glycolipids. Mutations of these transporters have broad developmental phenotypes across many species including diseases in humans and cattle.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Eucariontes/fisiología , Aparato de Golgi/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Nucleótidos/metabolismo , Secuencia de Aminoácidos , Animales , Eucariontes/citología , Humanos , Leishmania/metabolismo , Leishmania/patogenicidad , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Mutación , Fenotipo , Alineación de Secuencia
8.
Biochemistry ; 47(14): 4337-44, 2008 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-18341292

RESUMEN

The genome of Caenorhabditis elegans encodes for 18 putative nucleotide sugar transporters even though its glycome only contains 7 different monosaccharides. To understand the biological significance of this phenomenon, we have begun a systematic substrate characterization of the above putative transporters and have determined that the gene ZK896.9 encodes a Golgi apparatus transporter for UDP-glucose, UDP-galactose, UDP- N-acetylglucosamine, and UDP- N-acetylgalactosamine. This is the first tetrasubstrate nucleotide sugar transporter characterized for any organism and is also the first nonplant transporter for UDP-glucose. Evidence for the above substrate specificity and substrate transport saturation kinetics was obtained by expression of ZK896.9 in Saccharomyces cerevisiae followed by Golgi enriched vesicle isolation and assays in vitro. Further evidence for UDP-glucose transport was obtained by expression of ZK 896.9 in Giardia lamblia, an organism recently characterized as having endogenous transport activity for only UDP- N-acetylglucosamine. Expression of ZK896.9 was also able to correct the phenotype of a mutant Chinese ovary cell line specifically defective in the transport of UDP-galactose into the Golgi apparatus and of a mutant of the yeast Kluyveromyces lactis specifically defective in the transport of UDP- N-acetylglucosamine into its Golgi apparatus. Because up to now all three other characterized nucleotide sugar transporters of C. elegans have been found to transport two or three substrates, the substrate specificity of ZK896.9 raises questions as to the evolutionary ancestry of this group of proteins in this nematode.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Uridina Difosfato Galactosa/metabolismo , Uridina Difosfato Glucosa/metabolismo , Uridina Difosfato N-Acetilgalactosamina/metabolismo , Uridina Difosfato N-Acetilglucosamina/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Células CHO , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Secuencia Conservada , Cricetinae , Cricetulus , Cinética , Datos de Secuencia Molecular , Proteínas de Transporte de Nucleótidos/química , Proteínas de Transporte de Nucleótidos/genética , Alineación de Secuencia
9.
J Biol Chem ; 282(38): 27970-5, 2007 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-17652078

RESUMEN

Transporters of nucleotide sugars regulate the availability of these substrates required for glycosylation reactions in the lumen of the Golgi apparatus and play an important role in the development of multicellular organisms. Caenorhabditis elegans has seven different sugars in its glycoconjugates, although 18 putative nucleotide sugar transporters are encoded in the genome. Among these, SQV-7, SRF-3, and CO3H5.2 exhibit partially overlapping substrate specificity and expression patterns. We now report evidence of functional redundancy between transporters CO3H5.2 and SRF-3. Reducing the activity of the CO3H5.2 gene product by RNA interference (RNAi) in SRF-3 mutants results in oocyte accumulation and abnormal gonad morphology, whereas comparable RNAi treatment of wild type or RNAi hypersensitive C. elegans strains does not cause detectable defects. We hypothesize this genetic enhancement to be a mechanism to ensure adequate glycoconjugate biosynthesis required for normal tissue development in multicellular organisms. Furthermore, we show that transporters SRF-3 and CO3H5.2, which are closely related in the phylogenetic tree, share a simultaneous and independent substrate transport mechanism that is different from the competitive one previously demonstrated for transporter SQV-7, which shares a lower amino acid sequence identity with CO3H5.2 and SRF-3. Therefore, different mechanisms for transporting multiple nucleotide sugars may have evolved parallel to transporter amino acid divergence.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte de Nucleótidos/química , Animales , Transporte Biológico , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/fisiología , Carbohidratos/química , Evolución Molecular , Genoma , Proteínas de Transporte de Membrana/química , Modelos Biológicos , Filogenia , Interferencia de ARN , Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares
10.
Acc Chem Res ; 39(11): 805-12, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17115720

RESUMEN

Approximately 80% of secreted and membrane proteins (40% of all proteins) of eukaryotes become covalently linked to sugars in the lumen of the Golgi apparatus, a cellular organelle that is part of the secretory system of all eukaryotes. The sugar donors are mostly nucleoside diphosphate sugars (nucleotide sugars) and must be translocated from the cytosol, their site of synthesis, across the Golgi apparatus membrane and into the lumen by specific transporters. These are hydrophobic, homodimeric proteins that span the membrane multiple times. Mutants of these proteins have developmental phenotypes including diseases in humans and cattle.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Enfermedad , Aparato de Golgi/metabolismo , Proteínas de Transporte de Membrana , Azúcares de Nucleósido Difosfato/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Enfermedad/etiología , Humanos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Azúcares de Nucleósido Difosfato/química , Especificidad por Sustrato
11.
Proc Natl Acad Sci U S A ; 103(44): 16176-81, 2006 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-17060606

RESUMEN

Nucleotide sugar transporters play an essential role in protein and lipid glycosylation, and mutations can result in developmental phenotypes. We have characterized a transporter of UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine encoded by the Caenorhabditis elegans gene C03H5.2. Surprisingly, translocation of these substrates occurs in an independent and simultaneous manner that is neither a competitive nor a symport transport. Incubations of Golgi apparatus vesicles of Saccharomyces cerevisiae expressing C03H5.2 protein with these nucleotide sugars labeled with (3)H and (14)C in their sugars showed that both substrates enter the lumen to the same extent, whether or not they are incubated alone or in the presence of a 10-fold excess of the other nucleotide sugar. Vesicles containing a deletion mutant of the C03H5.2 protein transport UDP-N-acetylglucosamine at rates comparable with that of wild-type transporter, whereas transport of UDP-N-acetylgalactosamine was decreased by 85-90%, resulting in an asymmetrical loss of substrate transport.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Uridina Difosfato N-Acetilgalactosamina/metabolismo , Uridina Difosfato N-Acetilglucosamina/metabolismo , Animales , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Eliminación de Gen , Cinética , Especificidad por Sustrato
12.
J Biol Chem ; 280(37): 32168-76, 2005 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-16027148

RESUMEN

Entamoeba histolytica is a protozoan parasite that causes dysentery in developing countries of Africa, Asia, and Latin America. The lack of a defined Golgi apparatus in E. histolytica as well as in other protists led to the hypothesis that they had evolved prior to the acquisition of such organelle even though glycoproteins, glycolipids, and antigens have been detected, the latter of which react with antibodies against Golgi apparatus proteins of higher eukaryotes. We here provide direct evidence for Golgi apparatus-like functions in E. histolytica as well as for components of glycoprotein folding quality control. Using a combination of bioinformatic, cell biological, and biochemical approaches we have (a) cloned and expressed the E. histolytica UDP-galactose transporter in Saccharomyces cerevisiae; its K(m) for UDP-galactose is 2.9 microm; (b) characterized vesicles in an extract of the above protist, which transport UDP-galactose into their lumen with a K(m) of 2.7 microm;(c) detected galactosyltransferase activity(ies) in the lumen of the above vesicles with the K(m) for UDP-galactose, using endogenous acceptors, being 93 microm;(d) measured latent apyrase activities in the above vesicles, suggesting they are in the lumen; (e) characterized UDP-glucose transport activities in Golgi apparatus and endoplasmic reticulum-like vesicles with K(m)s for UDP-glucose of approximately 2-4 microm. Although the endoplasmic reticulum-like fraction showed UDP-glucose: glycoprotein glucosyltransferase activity, the Golgi apparatus-like fraction did not. This fraction contained other glucosyltransferases. Together, these studies demonstrate that E. histolytica has different vesicles that play a role in protein glycosylation and folding quality control, analogous to the above organellar functions of higher eukaryotes.


Asunto(s)
Retículo Endoplásmico/metabolismo , Entamoeba histolytica/metabolismo , Aparato de Golgi/metabolismo , Secuencia de Aminoácidos , Animales , Apirasa/química , Bioquímica/métodos , Transporte Biológico , Western Blotting , Membrana Celular/metabolismo , Biología Computacional , Relación Dosis-Respuesta a Droga , Retículo Endoplásmico/fisiología , Galactosa/química , Glucosiltransferasas/metabolismo , Glicoproteínas , Glicosilación , Cinética , Datos de Secuencia Molecular , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Fracciones Subcelulares , Temperatura , Uridina Difosfato Galactosa/metabolismo , Uridina Difosfato Glucosa/química
13.
J Biol Chem ; 280(28): 26063-72, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15899899

RESUMEN

We have examined the N-glycans present during the developmental stages of Caenorhabditis elegans using two approaches, 1) a combination of permethylation followed by MALDI-TOF mass spectrometry (MS) and 2) derivatization with 2-aminobenzamide followed by separation by high-performance liquid chromatography and analyses by MALDI-TOF MS, post source decay (PSD) MS, and MALDI-QoTOF MS/MS. The N-glycan profile of each developmental stage (Larva 1, Larva 2, Larva 3, Larva 4, and Dauer and adult) appears to be unique. The pattern of complex N-glycans was stage-specific with the general trend of number and abundance of glycans being Dauer approximately = L1 > adult approximately = L4 > L3 approximately = L2. Dauer larvae contained complex N-glycans with higher molecular masses than those seen in other stages. MALDI-QoTOF MS/MS of Hex4HexNAc4 showed an N-acetyllac-tosamine substitution not previously observed in C. elegans. Phosphorylcholine (Pc)-substituted glycans were also found to be stage-specific. Higher molecular weight Pc-containing glycans, including fucose-containing ones such as difucosyl Pc-glycan (Pc1dHex2Hex5HexNAc6) seen in Dauer larvae, have not been observed in any organism. Pc2Hex4HexNAc3, from Dauer larvae, when subjected to PSD MS analyses, showed Pc may substitute both core and terminally linked GlcNAc; no such structure has previously been reported in any organism. C. elegans-specific fucosyl and native methylated glycans were found in all developmental stages. Taken together, the above results demonstrate that in-depth investigation of the role of the above N-glycans during C. elegans development should lead to a better understanding of their significance and the ways that they may govern interactions, both within the organism during development and between the mobile nematode and its pathogens.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Polisacáridos/química , Polisacáridos/fisiología , Animales , Caenorhabditis elegans , Secuencia de Carbohidratos , Cromatografía , Cromatografía Líquida de Alta Presión , Colágeno/química , Glicosilación , Hidrógeno/química , Espectrometría de Masas , Datos de Secuencia Molecular , Oligosacáridos/química , Fosforilcolina/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacología
14.
J Biol Chem ; 279(51): 52893-903, 2004 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-15452127

RESUMEN

srf-3 is a mutant of C. elegans that is resistant to infection by Microbacterium nematophilum and to binding of the biofilm produced by Yersinia pseudotuberculosis and Yersinia pestis. Recently, SRF-3 was characterized as a nucleotide sugar transporter of the Golgi apparatus occurring exclusively in hypodermal seam cells, pharyngeal cells, and spermatheca. Based on the above observations, we hypothesized that srf-3 may have altered glyconjugates that may enable the mutant nematode to grow unaffected in the presence of the above pathogenic bacteria. Following analyses of N- and O-linked glycoconjugates of srf-3 and wild type nematodes using a combination of enzymatic degradation, permethylation, and mass spectrometry, we found in srf-3 a 65% reduction of acidic O-linked glycoconjugates containing glucuronic acid and galactose as well as a reduction of N-linked glycoconjugates containing galactose and fucose. These results are consistent with the specificity of SRF-3 for UDP-galactose and strongly suggest that the above glycoconjugates play an important role in allowing adhesion of M. nematophilum or Y. pseudotuberculosis biofilm to wild type C. elegans. Furthermore, because seam cells as well as pharyngeal cells secrete their glycoconjugates to the cuticle and surrounding surfaces, the results also demonstrate the critical role of these cells and their secreted glycoproteins in nematode-bacteria interactions and offer a mechanistic basis for strategies to block such recognition processes.


Asunto(s)
Biopelículas , Glicoconjugados/química , Proteínas de Transporte de Membrana/genética , Mutación , Animales , Caenorhabditis elegans , Secuencia de Carbohidratos , Fucosa/química , Galactosa/química , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Iones , Espectrometría de Masas , Metilación , Modelos Químicos , Datos de Secuencia Molecular , Monosacáridos/química , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/química , Fenotipo , Polisacáridos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Uridina Difosfato Galactosa/química , alfa-Manosidasa/metabolismo
15.
J Biol Chem ; 279(29): 30440-8, 2004 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-15123614

RESUMEN

During the establishment of a bacterial infection, the surface molecules of the host organism are of particular importance, since they mediate the first contact with the pathogen. In Caenorhabditis elegans, mutations in the srf-3 locus confer resistance to infection by Microbacterium nematophilum, and they also prevent biofilm formation by Yersinia pseudotuberculosis, a close relative of the bubonic plague agent Yersinia pestis. We cloned srf-3 and found that it encodes a multitransmembrane hydrophobic protein resembling nucleotide sugar transporters of the Golgi apparatus membrane. srf-3 is exclusively expressed in secretory cells, consistent with its proposed function in cuticle/surface modification. We demonstrate that SRF-3 can function as a nucleotide sugar transporter in heterologous in vitro and in vivo systems. UDP-galactose and UDP-N-acetylglucosamine are substrates for SRF-3. We propose that the inability of Yersinia biofilms and M. nematophilum to adhere to the nematode cuticle is due to an altered glycoconjugate surface composition of the srf-3 mutant.


Asunto(s)
Adhesión Bacteriana , Transporte Biológico , Metabolismo de los Hidratos de Carbono , Proteínas de Transporte de Membrana/fisiología , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans , Membrana Celular/metabolismo , Clonación Molecular , ADN Complementario/metabolismo , Perros , Relación Dosis-Respuesta a Droga , Exones , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes , Intrones , Proteínas Luminiscentes/metabolismo , Proteínas de Transporte de Membrana/química , Microscopía Fluorescente , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Fenotipo , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Ricina/farmacología , Homología de Secuencia de Aminoácido , Transfección , Uridina Difosfato Galactosa/metabolismo , Uridina Difosfato N-Acetilglucosamina/metabolismo , Yersinia pseudotuberculosis
16.
J Biol Chem ; 279(26): 27390-8, 2004 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-15102851

RESUMEN

Lumenal ecto-nucleoside tri- and di-phosphohydrolases (ENTPDases) of the secretory pathway of eukaryotes hydrolyze nucleoside diphosphates resulting from glycosyltransferase-mediated reactions, yielding nucleoside monophosphates. The latter are weaker inhibitors of glycosyltransferases than the former and are also antiporters for the transport of nucleotide sugars from the cytosol to the endoplasmic reticulum (ER) and Golgi apparatus (GA) lumen. Here we describe the presence of two cation-dependent nucleotide phosphohydrolase activities in membranes of Caenorhabditis elegans: one, UDA-1, is a UDP/GDPase encoded by the gene uda-1, whereas the other is an apyrase encoded by the gene ntp-1. UDA-1 shares significant amino acid sequence similarity to yeast GA Gda1p and mammalian UDP/GDPases and has a lumenal active site in vesicles displaying an intermediate density between those of the ER and GA when expressed in S. cerevisiae. NTP-1 expressed in COS-7 cells appeared to localize to the GA. The transcript of uda-1 but not those of two other C. elegans ENTPDase mRNAs (ntp-1 and mig-23) was induced up to 3.5-fold by high temperature, tunicamycin, and ethanol. The same effectors triggered the unfolded protein response as shown by the induction of expression of green fluorescent protein under the control of the BiP chaperone promoter and the UDP-glucose:glycoprotein glucosyltransferase. Up-regulation of uda-1 did not occur in ire-1-deficient mutants, demonstrating the role of this ER stress sensor in this event. We hypothesize that up-regulation of uda-1 favors hydrolysis of the glucosyltransferase inhibitory product UDP to UMP, and that the latter product then exits the lumen of the ER or pre-GA compartment in a coupled exchange with the entry of UDP-glucose, thereby further relieving ER stress by favoring protein re-glycosylation.


Asunto(s)
Caenorhabditis elegans/enzimología , Retículo Endoplásmico/enzimología , Proteínas Quinasas/metabolismo , Pirofosfatasas/biosíntesis , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Aminoácidos/química , Animales , Células COS , Caenorhabditis elegans/genética , Calcio/química , Calcio/metabolismo , Quitinasas/metabolismo , Chlorocebus aethiops , Datos de Secuencia Molecular , Nucleotidasas/metabolismo , Filogenia , Proteínas Quinasas/genética , Pirofosfatasas/química , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Estrés Fisiológico/metabolismo , Especificidad por Sustrato , Temperatura , Activación Transcripcional , Regulación hacia Arriba
17.
Proc Natl Acad Sci U S A ; 101(10): 3404-8, 2004 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-14993596

RESUMEN

The biosynthesis in vitro of phosphorylcholine oligosaccharides in Caenorhabditis elegans has been investigated. Here we show that extracts of C. elegans' microsomes transfer phosphorylcholine from L-alpha-dipalmitoyl phosphatidylcholine to hybrid and complex type N-linked oligosaccharides containing mannose residues disubstituted with N-acetylglucosamine. The reaction products are consistent with structures reported for C. elegans as well those found in the filarial nematodes Acanthocheilonema viteae, Onchocerca volvulus, and Brugia malayi, strongly supporting the concept that the phosphorylcholine oligosaccharide biosynthetic enzymes are conserved in this group of organisms. Because it is thought that phosphorylcholine substitution of oligosaccharides modulates host immune response in filarial infections, this in vitro system may help in gaining an understanding of the basis for this response.


Asunto(s)
Caenorhabditis elegans/metabolismo , Oligosacáridos/biosíntesis , Fosforilcolina/metabolismo , Animales , Secuencia de Carbohidratos , Técnicas In Vitro , Datos de Secuencia Molecular , Oligosacáridos/química , Fosforilcolina/química , Fosfotransferasas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
Eukaryot Cell ; 1(3): 420-31, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12455990

RESUMEN

Cell wall mannoproteins are largely responsible for the adhesive properties and immunomodulation ability of the fungal pathogen Candida albicans. The outer chain extension of yeast mannoproteins occurs in the lumen of the Golgi apparatus. GDP-mannose must first be transported from the cytosol into the Golgi lumen, where mannose is transferred to mannans. GDP is hydrolyzed by a GDPase, encoded by GDA1, to GMP, which then exits the Golgi lumen in a coupled, equimolar exchange with cytosolic GDP-mannose. We isolated and disrupted the C. albicans homologue of the Saccharomyces cerevisiae GDA1 gene in order to investigate its role in protein mannosylation and pathogenesis. CaGda1p shares four apyrase conserved regions with other nucleoside diphosphatases. Membranes prepared from the C. albicans disrupted gda1/gda1 strain had a 90% decrease in the ability to hydrolyze GDP compared to wild type. The gda1/gda1 mutants showed a severe defect in O-mannosylation and reduced cell wall phosphate content. Other cell wall-related phenotypes are present, such as elevated chitin levels and increased susceptibility to attack by beta-1,3-glucanases. Our results show that the C. albicans organism contains beta-mannose at their nonreducing end, differing from S. cerevisiae, which has only alpha-linked mannose residues in its O-glycans. Mutants lacking both alleles of GDA1 grow at the same rate as the wild type but are partially blocked in hyphal formation in Lee solid medium and during induction in liquid by changes in temperature and pH. However, the mutants still form normal hyphae in the presence of serum and N-acetylglucosamine and do not change their adherence to HeLa cells. Taken together, our data are in agreement with the hypothesis that several pathways regulate the yeast-hypha transition. Gda1/gda1 cells offer a model for discriminating among them.


Asunto(s)
Candida albicans/metabolismo , GTP Fosfohidrolasas/metabolismo , Alelos , Secuencia de Aminoácidos , Apirasa/genética , Apirasa/aislamiento & purificación , Apirasa/metabolismo , Secuencia de Bases , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Pared Celular/metabolismo , ADN de Hongos/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/aislamiento & purificación , Genes Fúngicos , Prueba de Complementación Genética , Glicosilación , Aparato de Golgi/enzimología , Células HeLa , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Morfogénesis , Mutación , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
19.
J Biol Chem ; 277(51): 49143-57, 2002 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-12361949

RESUMEN

We report the fine structure of a nearly contiguous series of N-glycans from the soil nematode Caenorhabditis elegans. Five major classes are revealed including high mannose, mammalian-type complex, hybrid, fuco-pausimannosidic (five mannose residues or fewer substituted with fucose), and phosphocholine oligosaccharides. The high mannose, complex, and hybrid N-glycan series show a high degree of conservation with the mammalian biosynthetic pathways. The fuco-pausimannosidic glycans contain a novel terminal fucose substitution of mannose. The phosphocholine oligosaccharides are high mannose type and are multiply substituted with phosphocholine. Although phosphocholine oligosaccharides are known immunomodulators in human nematode and trematode infections, C. elegans is unique as a non-parasitic nematode containing phosphocholine N-glycans. Therefore, studies in C. elegans should aid in the elucidation of the biosynthetic pathway(s) of this class of biomedically relevant compounds. Results presented here show that C. elegans has a functional orthologue for nearly every known enzyme found to be deficient in congenital disorders of glycosylation types I and II. This nematode is well characterized genetically and developmentally. Therefore, elucidation of its N-glycome, as shown in this report, may place it among the useful systems used to investigate human disorders of glycoconjugate synthesis such as the congenital disorders of glycosylation syndromes.


Asunto(s)
Caenorhabditis elegans/metabolismo , Polisacáridos/química , Animales , Western Blotting , Secuencia de Carbohidratos , Carbohidratos/química , Cromatografía , Glicosilación , Hidrólisis , Espectroscopía de Resonancia Magnética , Manosa/química , Espectrometría de Masas , Datos de Secuencia Molecular , Monosacáridos/química , Oligosacáridos/química , Estructura Terciaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
Am J Med Genet ; 110(2): 131-5, 2002 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12116250

RESUMEN

Leukocyte adhesion deficiency (LAD) type II is a rare autosomal recessive syndrome characterized by recurrent infections, typical dysmorphic features, the Bombay blood phenotype and severe growth and psychomotor retardation. It is attributed to a general absence of fucosylated glycans on the cell surface. Three Arab Israeli patients and one Turkish child have been reported so far. The primary defect in a specific GDP-L-fucose transporter of the Golgi apparatus has been disclosed recently. All three children reported by us are homozygous for one single founder mutation, different from that reported in the Turkish child. The amount of mRNA of the GDP-L-fucose transporter in cells from Arab patients and their parents are comparable to controls. Genotype/phenotype correlation studies show that the two different mutations are distinguished by differences in response to fucose supplementation and in the clinical phenotypes.


Asunto(s)
Proteínas Portadoras/genética , Trastornos Congénitos de Glicosilación/genética , Efecto Fundador , Síndrome de Deficiencia de Adhesión del Leucocito/genética , Proteínas de Transporte de Monosacáridos , Secuencia de Bases , Trastornos Congénitos de Glicosilación/patología , ADN/química , ADN/genética , Análisis Mutacional de ADN , Salud de la Familia , Femenino , Genotipo , Humanos , Síndrome de Deficiencia de Adhesión del Leucocito/patología , Masculino , Mutación Missense , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA