Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 101
1.
Sci Rep ; 14(1): 5305, 2024 03 04.
Article En | MEDLINE | ID: mdl-38438420

Glioblastoma (GBM) is the most common primary malignant brain tumor. Currently, there are few effective treatment options for GBM beyond surgery and chemo-radiation, and even with these interventions, median patient survival remains poor. While immune checkpoint inhibitors (ICIs) have demonstrated therapeutic efficacy against non-central nervous system cancers, ICI trials for GBM have typically had poor outcomes. TIGIT is an immune checkpoint receptor that is expressed on activated T-cells and has a role in the suppression of T-cell and Natural Killer (NK) cell function. As TIGIT expression is reported as both prognostic and a biomarker for anti-TIGIT therapy, we constructed a molecular imaging agent, [89Zr]Zr-DFO-anti-TIGIT (89Zr-αTIGIT), to visualize TIGIT in preclinical GBM by immunoPET imaging. PET imaging and biodistribution analysis of 89Zr-αTIGIT demonstrated uptake in the tumor microenvironment of GBM-bearing mice. Blocking antibody and irrelevant antibody tracer studies demonstrated specificity of 89Zr-αTIGIT with significance at a late time point post-tracer injection. However, the magnitude of 89Zr-αTIGIT uptake in tumor, relative to the IgG tracer was minimal. These findings highlight the features and limitations of using 89Zr-αTIGIT to visualize TIGIT in the GBM microenvironment.


Glioblastoma , Glioma , Humans , Animals , Mice , Tissue Distribution , Glioma/diagnostic imaging , Glioblastoma/diagnostic imaging , Positron-Emission Tomography , Receptors, Immunologic , Tumor Microenvironment
2.
CNS Neurosci Ther ; 30(3): e14654, 2024 03.
Article En | MEDLINE | ID: mdl-38433018

BACKGROUND: Astrogliosis and white matter lesions (WML) are key characteristics of vascular contributions to cognitive impairment and dementia (VCID). However, the molecular mechanisms underlying VCID remain poorly understood. Stimulation of Na-K-Cl cotransport 1 (NKCC1) and its upstream kinases WNK (with no lysine) and SPAK (the STE20/SPS1-related proline/alanine-rich kinase) play a role in astrocytic intracellular Na+ overload, hypertrophy, and swelling. Therefore, in this study, we assessed the effect of SPAK inhibitor ZT-1a on pathogenesis and cognitive function in a mouse model of VCID induced by bilateral carotid artery stenosis (BCAS). METHODS: Following sham or BCAS surgery, mice were randomly assigned to receive either vehicle (DMSO) or SPAK inhibitor ZT-1a treatment regimen (days 14-35 post-surgery). Mice were then evaluated for cognitive functions by Morris water maze, WML by ex vivo MRI-DTI analysis, and astrogliosis/demyelination by immunofluorescence and immunoblotting. RESULTS: Compared to sham control mice, BCAS-Veh mice exhibited chronic cerebral hypoperfusion and memory impairments, accompanied by significant MRI DTI-detected WML and oligodendrocyte (OL) death. Increased activation of WNK-SPAK-NKCC1-signaling proteins was detected in white matter tissues and in C3d+ GFAP+ cytotoxic astrocytes but not in S100A10+ GFAP+ homeostatic astrocytes in BCAS-Veh mice. In contrast, ZT-1a-treated BCAS mice displayed reduced expression and phosphorylation of NKCC1, decreased astrogliosis, OL death, and WML, along with improved memory functions. CONCLUSION: BCAS-induced upregulation of WNK-SPAK-NKCC1 signaling contributes to white matter-reactive astrogliosis, OL death, and memory impairment. Pharmacological inhibition of the SPAK activity has therapeutic potential for alleviating pathogenesis and memory impairment in VCID.


Cognitive Dysfunction , Dementia, Vascular , Animals , Mice , Gliosis/drug therapy , Disease Models, Animal , Cognition , Inflammation
3.
Magn Reson Med ; 91(1): 357-367, 2024 01.
Article En | MEDLINE | ID: mdl-37798945

PURPOSE: pH enhanced (pHenh ) CEST imaging combines the pH sensitivity from amide and guanidino signals, but the saturation parameters have not been optimized. We propose pHdual as a variant of pHenh that suppresses background signal variations, while enhancing pH sensitivity and potential for imaging ischemic brain injury of stroke. METHODS: Simulation and in vivo rodent stroke experiments of pHenh MRI were performed with varied RF saturation powers for both amide and guanidino protons to optimize the contrast between lesion/normal tissues, while simultaneously minimizing signal variations across different types of normal tissues. In acute stroke, contrast and volume ratio measured by pHdual imaging were compared with an amide-CEST approach, and perfusion and diffusion MRI. RESULTS: Simulation experiments indicated that amide and guanidino CEST signals exhibit unique sensitivities across different pH ranges, with pHenh producing greater sensitivity over a broader pH regime. The pHenh data of rodent stroke brain demonstrated that the lesion/normal tissue contrast was maximized for an RF saturation power pair of 0.5 µT at 2.0 ppm and 1.0 µT at 3.6 ppm, whereas an optimal contrast-to-variation ratio (CVR) was obtained with a 0.7 µT saturation at 2.0 ppm and 0.8 µT at 3.6 ppm. In acute stroke, CVR optimized pHenh (i.e., pHdual ) achieved a higher sensitivity than the three-point amide-CEST approach, and distinct patterns of lesion tissue compared to diffusion and perfusion MRI. CONCLUSION: pHdual MRI improves the sensitivity of pH-weighted imaging and will be a valuable tool for assessing tissue viability in stroke.


Image Enhancement , Stroke , Humans , Hydrogen-Ion Concentration , Image Enhancement/methods , Phantoms, Imaging , Stroke/diagnostic imaging , Magnetic Resonance Imaging/methods , Amides
4.
Neuroimage ; 282: 120406, 2023 11 15.
Article En | MEDLINE | ID: mdl-37827206

The connectivity of the hippocampus is essential to its functions. To gain a whole system view of intrahippocampal connectivity, ex vivo mesoscale (100 µm isotropic resolution) multi-shell diffusion MRI (11.7T) and tractography were performed on entire post-mortem human right hippocampi. Volumetric measurements indicated that the head region was largest followed by the body and tail regions. A unique anatomical organization in the head region reflected a complex organization of the granule cell layer (GCL) of the dentate gyrus. Tractography revealed the volumetric distribution of the perforant path, including both the tri-synaptic and temporoammonic pathways, as well as other well-established canonical connections, such as Schaffer collaterals. Visualization of the perforant path provided a means to verify the borders between the pro-subiculum and CA1, as well as between CA1/CA2. A specific angularity of different layers of fibers in the alveus was evident across the whole sample and allowed a separation of afferent and efferent connections based on their origin (i.e. entorhinal cortex) or destination (i.e. fimbria) using a cluster analysis of streamlines. Non-canonical translamellar connections running along the anterior-posterior axis were also discerned in the hilus. In line with "dentations" of the GCL, mossy fibers were bunching together in the sagittal plane revealing a unique lamellar organization and connections between these. In the head region, mossy fibers projected to the origin of the fimbria, which was distinct from the body and tail region. Mesoscale tractography provides an unprecedented systems view of intrahippocampal connections that underpin cognitive and emotional processing.


Hippocampus , Perforant Pathway , Humans , Hippocampus/diagnostic imaging , Entorhinal Cortex , Brain , Diffusion Magnetic Resonance Imaging
5.
J Neurosci ; 43(44): 7351-7360, 2023 11 01.
Article En | MEDLINE | ID: mdl-37684030

Bilateral common carotid artery (CCA) stenosis (BCAS) is a useful model to mimic vascular cognitive impairment and dementia (VCID). However, current BCAS models have the disadvantages of high cost and incompatibility with magnetic resonance imaging (MRI) scanning because of metal implantation. We have established a new low-cost VCID model that better mimics human VCID and is compatible with live-animal MRI. The right and the left CCAs were temporarily ligated to 32- and 34-gauge needles with three ligations, respectively. After needle removal, CCA blood flow, cerebral blood flow, white matter injury (WMI) and cognitive function were measured. In male mice, needle removal led to ∼49.8% and ∼28.2% blood flow recovery in the right and left CCA, respectively. This model caused persistent and long-term cerebral hypoperfusion in both hemispheres (more severe in the left hemisphere), and WMI and cognitive dysfunction in ∼90% of mice, which is more reliable compared with other models. Importantly, these pathologic changes and cognitive impairments lasted for up to 24 weeks after surgery. The survival rate over 24 weeks was 81.6%. Female mice showed similar cognitive dysfunction, but a higher survival rate (91.6%) and relatively milder white matter injury. A novel, low-cost VCID model compatible with live-animal MRI with long-term outcomes was established.SIGNIFICANCE STATEMENT Bilateral common carotid artery (CCA) stenosis (BCAS) is an animal model mimicking carotid artery stenosis to study vascular cognitive impairment and dementia (VCID). However, current BCAS models have the disadvantages of high cost and incompatibility with magnetic resonance imaging (MRI) scanning due to metal implantation. We established a new asymmetric BCAS model by ligating the CCA to various needle gauges followed by an immediate needle removal. Needle removal led to moderate stenosis in the right CCA and severe stenosis in the left CCA. This needle model replicates the hallmarks of VCID well in ∼90% of mice, which is more reliable compared with other models, has ultra-low cost, and is compatible with MRI scanning in live animals. It will provide a new valuable tool and offer new insights for VCID research.


Cognitive Dysfunction , Dementia, Vascular , Male , Mice , Female , Humans , Animals , Constriction, Pathologic/complications , Cognitive Dysfunction/etiology , Disease Models, Animal , Dementia, Vascular/diagnostic imaging , Dementia, Vascular/etiology , Dementia, Vascular/pathology , Cognition , Mice, Inbred C57BL
6.
Neuroprotection ; 1(1): 66-83, 2023 Sep.
Article En | MEDLINE | ID: mdl-37745674

Background: Huntington's disease is a progressive neurodegenerative disorder. Brain atrophy, as measured by volumetric magnetic resonance imaging (MRI), is a downstream consequence of neurodegeneration, but microstructural changes within brain tissue are expected to precede this volumetric decline. The tissue microstructure can be assayed non-invasively using diffusion MRI, which also allows a tractographic analysis of brain connectivity. Methods: We here used ex vivo diffusion MRI (11.7 T) to measure microstructural changes in different brain regions of end-stage (14 weeks of age) wild type and R6/2 mice (male and female) modeling Huntington's disease. To probe the microstructure of different brain regions, reduce partial volume effects and measure connectivity between different regions, a 100 µm isotropic voxel resolution was acquired. Results: Although fractional anisotropy did not reveal any difference between wild-type controls and R6/2 mice, mean, axial, and radial diffusivity were increased in female R6/2 mice and decreased in male R6/2 mice. Whole brain streamlines were only reduced in male R6/2 mice, but streamline density was increased. Region-to-region tractography indicated reductions in connectivity between the cortex, hippocampus, and thalamus with the striatum, as well as within the basal ganglia (striatum-globus pallidus-subthalamic nucleus-substantia nigra-thalamus). Conclusions: Biological sex and left/right hemisphere affected tractographic results, potentially reflecting different stages of disease progression. This proof-of-principle study indicates that diffusion MRI and tractography potentially provide novel biomarkers that connect volumetric changes across different brain regions. In a translation setting, these measurements constitute a novel tool to assess the therapeutic impact of interventions such as neuroprotective agents in transgenic models, as well as patients with Huntington's disease.

7.
Cancer Res Commun ; 3(7): 1173-1188, 2023 07.
Article En | MEDLINE | ID: mdl-37426447

Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Immunotherapy may be promising for the treatment of some patients with GBM; however, there is a need for noninvasive neuroimaging techniques to predict immunotherapeutic responses. The effectiveness of most immunotherapeutic strategies requires T-cell activation. Therefore, we aimed to evaluate an early marker of T-cell activation, CD69, for its use as an imaging biomarker of response to immunotherapy for GBM. Herein, we performed CD69 immunostaining on human and mouse T cells following in vitro activation and post immune checkpoint inhibitors (ICI) in an orthotopic syngeneic mouse glioma model. CD69 expression on tumor-infiltrating leukocytes was assessed using single-cell RNA sequencing (scRNA-seq) data from patients with recurrent GBM receiving ICI. Radiolabeled CD69 Ab PET/CT imaging (CD69 immuno-PET) was performed on GBM-bearing mice longitudinally to quantify CD69 and its association with survival following immunotherapy. We show CD69 expression is upregulated upon T-cell activation and on tumor-infiltrating lymphocytes (TIL) in response to immunotherapy. Similarly, scRNA-seq data demonstrated elevated CD69 on TILs from patients with ICI-treated recurrent GBM as compared with TILs from control cohorts. CD69 immuno-PET studies showed a significantly higher tracer uptake in the tumors of ICI-treated mice compared with controls. Importantly, we observed a positive correlation between survival and CD69 immuno-PET signals in immunotherapy-treated animals and established a trajectory of T-cell activation by virtue of CD69-immuno-PET measurements. Our study supports the potential use of CD69 immuno-PET as an immunotherapy response assessment imaging tool for patients with GBM. Significance: Immunotherapy may hold promise for the treatment of some patients with GBM. There is a need to assess therapy responsiveness to allow the continuation of effective treatment in responders and to avoid ineffective treatment with potential adverse effects in the nonresponders. We demonstrate that noninvasive PET/CT imaging of CD69 may allow early detection of immunotherapy responsiveness in patients with GBM.


Glioblastoma , Animals , Humans , Mice , Glioblastoma/diagnostic imaging , Immunotherapy , Neoplasm Recurrence, Local , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , T-Lymphocytes/metabolism
8.
PNAS Nexus ; 2(5): pgad149, 2023 May.
Article En | MEDLINE | ID: mdl-37215630

White-matter injury in sickle-cell disease (SCD) includes silent cerebral infarction diagnosed by diffusion tensor imaging (DTI), a complication associated with cognitive dysfunction in children with SCD. The link between white-matter injury and cognitive dysfunction has not been fully elucidated. The goal of this study was to define whether cerebrovascular lesions and cognitive function in SCD are linked to neuroaxonal damage and astrocyte activation in humanized Townes' SCD mice homozygous for human sickle hemoglobin S (SS) and control mice homozygous for human normal hemoglobin A (AA). Mice underwent MRI with DTI and cognitive testing, and histology sections from their brains were stained to assess microstructural tissue damage, neuroaxonal damage, and astrocyte activation. Fractional anisotropy, showing microstructural cerebrovascular abnormalities identified by DTI in the white matter, was significantly associated with neuronal demyelination in the SS mouse brain. SS mice had reduced learning and memory function with a significantly lower discrimination index compared with AA control mice in the novel object recognition tests. Neuroaxonal damage in the SS mice was synchronously correlated with impaired neurocognitive function and activation of astrocytes. The interplay between astrocyte function and neurons may modulate cognitive performance in SCD.

9.
Neurobiol Dis ; 180: 106078, 2023 05.
Article En | MEDLINE | ID: mdl-36914076

Traumatic brain injury (TBI) is commonly followed by intractable psychiatric disorders and long-term changes in affect, such as anxiety. The present study sought to investigate the effect of repetitive intranasal delivery of interleukin-4 (IL-4) nanoparticles on affective symptoms after TBI in mice. Adult male C57BL/6 J mice (10-12 weeks of age) were subjected to controlled cortical impact (CCI) and assessed by a battery of neurobehavioral tests up to 35 days after CCI. Neuron numbers were counted in multiple limbic structures, and the integrity of limbic white matter tracts was evaluated using ex vivo diffusion tensor imaging (DTI). As STAT6 is a critical mediator of IL-4-specific transcriptional activation, STAT6 knockout mice were used to explore the role of endogenous IL-4/STAT6 signaling axis in TBI-induced affective disorders. We also employed microglia/macrophage (Mi/Mϕ)-specific PPARγ conditional knockout (mKO) mice to test if Mi/Mϕ PPARγ critically contributes to IL-4-afforded beneficial effects. We observed anxiety-like behaviors up to 35 days after CCI, and these measures were exacerbated in STAT6 KO mice but mitigated by repetitive IL-4 delivery. We discovered that IL-4 protected against neuronal loss in limbic structures, such as the hippocampus and the amygdala, and improved the structural integrity of fiber tracts connecting the hippocampus and amygdala. We also observed that IL-4 boosted a beneficial Mi/Mϕ phenotype (CD206+/Arginase 1+/PPARγ+ triple-positive) in the subacute injury phase, and that the numbers of Mi/Mϕ appositions with neurons were robustly correlated with long-term behavioral performances. Remarkably, PPARγ-mKO completely abolished IL-4-afforded protection. Thus, CCI induces long-term anxiety-like behaviors in mice, but these changes in affect can be attenuated by transnasal IL-4 delivery. IL-4 prevents the long-term loss of neuronal somata and fiber tracts in key limbic structures, perhaps due to a shift in Mi/Mϕ phenotype. Exogenous IL-4 therefore holds promise for future clinical management of mood disturbances following TBI.


Brain Injuries, Traumatic , Microglia , Mice , Male , Animals , PPAR gamma , Interleukin-4 , Diffusion Tensor Imaging , Mice, Inbred C57BL , Mice, Knockout , Anxiety/etiology , Neurons
10.
Neurobiol Dis ; 179: 106063, 2023 04.
Article En | MEDLINE | ID: mdl-36889482

Recent research highlights the function of regulatory T cells (Tregs) in white matter integrity in CNS diseases. Approaches that expand the number of Tregs have been utilized to improve stroke recovery. However, it remains unclear if Treg augmentation preserves white matter integrity early after stroke or promotes white matter repair. This study evaluates the effect of Treg augmentation on white matter injury and repair after stroke. Adult male C57/BL6 mice randomly received Treg or splenocyte (2 million, iv) transfer 2 h after transient (60 min) middle cerebral artery occlusion (tMCAO). Immunostaining showed improved white matter recovery after tMCAO in Treg-treated mice compared to mice received splenocytes. In another group of mice, IL-2/IL-2 antibody complexes (IL-2/IL-2Ab) or isotype IgG were administered (i.p) for 3 consecutive days starting 6 h after tMCAO, and repeated on day 10, 20 and 30. The IL-2/IL-2Ab treatment boosted the number of Tregs in blood and spleen and increased Treg infiltration into the ischemic brain. Longitudinal in vivo and ex vivo diffusion tensor imaging analysis revealed an increase in fractional anisotropy 28d and 35d, but not 14d, after stroke in IL-2/IL-2Ab-treated mice compared to isotype-treated mice, suggesting a delayed improvement in white matter integrity. IL-2/IL-2Ab also improved sensorimotor functions (rotarod test and adhesive removal test) 35d after stroke. There were correlations between white matter integrity and behavior performance. Immunostaining confirmed the beneficial effects of IL-2/IL-2Ab on white matter structures 35d after tMCAO. IL-2/IL-2Ab treatment starting as late as 5d after stroke still improved white matter integrity 21d after tMCAO, suggesting long-term salutary effects of Tregs on the late-stage tissue repair. We also found that IL-2/IL-2Ab treatment reduced the number of dead/dying OPCs and oligodendrocytes in the brain 3d after tMCAO. To confirm the direct effect of Tregs on remyelination, Tregs were cocultured with lysophosphatidyl choline (LPC)-treated organotypic cerebella. LPC exposure for 17 h induced demyelination in organotypic cultures, followed by gradual spontaneous remyelination upon removal of LPC. Co-culture with Tregs accelerated remyelination in organotypic cultures 7d after LPC. In conclusion, Boosting the number of Tregs protects oligodendrocyte lineage cells early after stroke and promotes long-term white matter repair and functional recovery. IL-2/IL-2Ab represents a feasible approach of Treg expansion for stroke treatment.


Stroke , White Matter , Mice , Male , Animals , T-Lymphocytes, Regulatory , Diffusion Tensor Imaging , Interleukin-2/pharmacology , Mice, Inbred C57BL
11.
Neurochem Int ; 162: 105441, 2023 01.
Article En | MEDLINE | ID: mdl-36375633

SPAK inhibitor ZT-1a was previously shown to be neuroprotective in murine ischemic stroke models. In this study, we further examined the efficacy of four ZT-1a derivatives (ZT-1c, -1d, -1g and -1h) on reducing stroke-induced sensorimotor function impairment and brain lesions. Vehicle control (Veh) or ZT-1 derivatives were administered via osmotic pump to adult C57BL/6J mice during 3-21 h post-stroke. Neurological behavior of these mice was assessed at days 1, 3, 5, and 7 post-stroke and MRI T2WI and DTI analysis was subsequently conducted in ex vivo brains. Veh-treated stroke mice displayed sensorimotor function deficits compared to Sham mice. In contrast, mice receiving ZT-1a derivatives displayed significantly lower neurological deficits at days 3-7 post-stroke (p < 0.05), with ZT-1a, ZT-1c and ZT-1d showing greater impact than ZT-1h and ZT-1g. ZT-1a treatment was the most effective in reducing brain lesion volume on T2WI and in preserving NeuN + neurons (p < 0.01), followed by ZT-1d > -1c > -1g > -1h. The Veh-treated stroke mice displayed white matter tissue injury, reflected by reduced fractional anisotropy (FA) or axial diffusivity (AD) values in external capsule, internal capsule and hippocampus. In contrast, only ZT-1a-as well as ZT-1c-treated stroke mice exhibited significantly higher FA and AD values. These findings demonstrate that post-stroke administration of SPAK inhibitor ZT-1a and its derivatives (ZT-1c and ZT-1d) is effective in protecting gray and white matter tissues in ischemic brains, showing a potential for ischemic stroke therapy development.


Brain Injuries , Ischemic Stroke , Nervous System Diseases , Stroke , White Matter , Mice , Animals , Mice, Inbred C57BL , Stroke/diagnostic imaging , Stroke/drug therapy , Stroke/pathology , Brain , Nervous System Diseases/pathology , White Matter/pathology , Brain Injuries/pathology , Ischemic Stroke/pathology
12.
J Neuroinflammation ; 19(1): 246, 2022 Oct 05.
Article En | MEDLINE | ID: mdl-36199097

Differential microglial inflammatory responses play a role in regulation of differentiation and maturation of oligodendrocytes (OLs) in brain white matter. How microglia-OL crosstalk is altered by traumatic brain injury (TBI) and its impact on axonal myelination and neurological function impairment remain poorly understood. In this study, we investigated roles of a Na+/H+ exchanger (NHE1), an essential microglial pH regulatory protein, in microglial proinflammatory activation and OL survival and differentiation in a murine TBI model induced by controlled cortical impact. Similar TBI-induced contusion volumes were detected in the Cx3cr1-CreERT2 control (Ctrl) mice and selective microglial Nhe1 knockout (Cx3cr1-CreERT2;Nhe1flox/flox, Nhe1 cKO) mice. Compared to the Ctrl mice, the Nhe1 cKO mice displayed increased resistance to initial TBI-induced white matter damage and accelerated chronic phase of OL regeneration at 30 days post-TBI. The cKO brains presented increased anti-inflammatory phenotypes of microglia and infiltrated myeloid cells, with reduced proinflammatory transcriptome profiles. Moreover, the cKO mice exhibited accelerated post-TBI sensorimotor and cognitive functional recovery than the Ctrl mice. These phenotypic outcomes in cKO mice were recapitulated in C57BL6J wild-type TBI mice receiving treatment of a potent NHE1 inhibitor HOE642 for 1-7 days post-TBI. Taken together, these findings collectively demonstrated that blocking NHE1 protein stimulates restorative microglial activation in oligodendrogenesis and neuroprotection, which contributes to accelerated brain repair and neurological function recovery after TBI.


Brain Injuries, Traumatic , White Matter , Animals , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Mice , Mice, Inbred C57BL , Microglia/metabolism , Oligodendroglia , Recovery of Function
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3115-3118, 2022 07.
Article En | MEDLINE | ID: mdl-36086018

Traditional methods to access subcortical structures involve the use of anatomical atlases and high precision stereotaxic frames but suffer from significant variations in implantation accuracy. Here, we leveraged the use of the ROSA One(R) Robot Assistance Platform in non-human primates to study electrophysiological interactions of the corticospinal tract with spinal cord circuits. We were able to target and stimulate the corticospinal tract within the internal capsule with high accuracy and efficiency while recording spinal local field potentials and multi-unit spikes. Our method can be extended to any subcortical structure and allows implantation of multiple deep brain stimulation probes at the same time. Clinical Relevance- Our method will allow us to elucidate further roles of the corticospinal tract and its interactions with other processing centers in intact animals and in motor syndromes in the future.


Neurosurgery , Robotics , Animals , Brain/surgery , Cardiac Electrophysiology , Haplorhini , Pyramidal Tracts
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 744-747, 2022 07.
Article En | MEDLINE | ID: mdl-36086335

Bladder dysfunction is a major health risk for people with spinal cord injury. Recently, we have demonstrated that epidural sacral spinal cord stimulation (SCS) can be used to activate lower urinary tract nerves and provide both major components of bladder control: voiding and continence. To effectively control these functions, it is necessary to selectively recruit the afferents of the pudendal nerve that evoke these distinct bladder reflexes. Translation of this innovation to clinical practice requires an understanding of optimal electrode placements and stimulation parameters to guide surgical practice and therapy design. Computational modeling is an important tool to address many of these experimentally intractable stimulation optimization questions. Here, we built a realistic MRI-based finite element computational model of the feline sacral spinal cord which included realistic axon trajectories in the dorsal and ventral roots. We coupled the model with biophysical simulations of membrane dynamics of afferent and efferent axons that project to the lower urinary tract through the pelvic and pudendal nerves. We simulated the electromagnetic fields arising from stimulation through SCS electrodes and calculated the expected recruitment of pelvic and pudendal fibers. We found that SCS can selectively recruit pudendal afferents, in agreement with our experimental data in cats. Our results suggest that SCS is a promising technology to improve bladder function after spinal cord injury, and computational modeling unlocks the potential for highly optimized, selective stimulation. Clinical Relevance - This model provides a method to non-invasively establish electrode placement and stimulation parameters for improving bladder function with epidural spinal cord stimulation.


Spinal Cord Injuries , Urinary Bladder , Animals , Cats , Electric Stimulation/methods , Humans , Urinary Bladder/physiology , Urination/physiology
15.
J Clin Invest ; 132(15)2022 08 01.
Article En | MEDLINE | ID: mdl-35912857

Immunomodulation holds therapeutic promise against brain injuries, but leveraging this approach requires a precise understanding of mechanisms. We report that CD8+CD122+CD49dlo T regulatory-like cells (CD8+ TRLs) are among the earliest lymphocytes to infiltrate mouse brains after ischemic stroke and temper inflammation; they also confer neuroprotection. TRL depletion worsened stroke outcomes, an effect reversed by CD8+ TRL reconstitution. The CXCR3/CXCL10 axis served as the brain-homing mechanism for CD8+ TRLs. Upon brain entry, CD8+ TRLs were reprogrammed to upregulate leukemia inhibitory factor (LIF) receptor, epidermal growth factor-like transforming growth factor (ETGF), and interleukin 10 (IL-10). LIF/LIF receptor interactions induced ETGF and IL-10 production in CD8+ TRLs. While IL-10 induction was important for the antiinflammatory effects of CD8+ TRLs, ETGF provided direct neuroprotection. Poststroke intravenous transfer of CD8+ TRLs reduced infarction, promoting long-term neurological recovery in young males or aged mice of both sexes. Thus, these unique CD8+ TRLs serve as early responders to rally defenses against stroke, offering fresh perspectives for clinical translation.


Ischemic Stroke , Stroke , Animals , CD8-Positive T-Lymphocytes/metabolism , Female , Interleukin-10/genetics , Interleukin-10/metabolism , Male , Mice , Mice, Inbred C57BL , Neuroprotection , Stroke/genetics , Stroke/metabolism
16.
JOR Spine ; 5(2): e1202, 2022 Jun.
Article En | MEDLINE | ID: mdl-35783914

Background: Previous animal models of intervertebral disc degeneration (IDD) rely on open surgical approaches, which confound the degenerative response and pain behaviors due to injury to surrounding tissues during the surgical approach. To overcome these challenges, we developed a minimally invasive percutaneous puncture procedure to induce IDD in a rat model. Methods: Ten Fischer 344 male rats underwent percutaneous annular puncture of lumbar intervertebral discs (IVDs) at L2-3, L3-4, and L4-5. Ten unpunctured rats were used as controls. Magnetic resonance imagings (MRIs), serum biomarkers, and behavioral tests were performed at baseline and 6, 12, and 18 weeks post puncture. Rats were sacrificed at 18 weeks and disc histology, immunohistochemistry, and glycosaminoglycan (GAG) assays were performed. Results: Punctured IVDs exhibited significant reductions in MRI signal intensity and disc volume. Disc histology, immunohistochemistry, and GAG assay results were consistent with features of IDD. IVD-punctured rats demonstrated significant changes in pain-related behaviors, including total distance moved, twitching frequency, and rearing duration. Conclusions: This is the first reported study of the successful establishment of a reproducible rodent model of a percutaneous lumbar annular puncture resulting in discogenic pain. This model will be useful to test therapeutics and elucidate the basic mechanisms of IDD and discogenic pain.

17.
Adv Sci (Weinh) ; 9(17): e2104986, 2022 06.
Article En | MEDLINE | ID: mdl-35403823

Chronic cerebral hypoperfusion-derived brain damage contributes to the progression of vascular cognitive impairment and dementia (VCID). Cumulative evidence has shown that microRNAs (miRs) are emerging as novel therapeutic targets for CNS disorders. In this study, it is sought to determine the regulatory role of miR-15a/16-1 in VCID. It is found that miR-15a/16-1 knockout (KO) mice exhibit less cognitive and sensorimotor deficits following VCID. Genetic deficiency of miR-15a/16-1 in VCID mice also mitigate myelin degeneration, axonal injury, and neuronal loss. Mechanistically, miR-15a/16-1 binds to the 3'-UTR of AKT3 and IL-10RA. Genetic deletion of miR-15a/16-1 increases AKT3 and IL-10RA expression in VCID brains, and intranasal delivery of AKT3 and IL-10RA siRNA-loaded nanoparticles partially reduce brain protection and cognitive recovery in miR-15a/16-1 KO mice after VCID. In conclusion, the miR-15a/16-1-IL/10RA/AKT3 axis plays a critical role in regulating vascular brain damage and cognitive decline after VCID. Targeting miR-15a/16-1 is a novel therapeutic approach for the treatment of VCID.


Brain Ischemia , Cognitive Dysfunction , Dementia, Vascular , MicroRNAs , 3' Untranslated Regions , Animals , Brain Ischemia/genetics , Cognitive Dysfunction/genetics , Dementia, Vascular/genetics , Mice , Mice, Knockout , MicroRNAs/genetics
18.
Proc Natl Acad Sci U S A ; 119(10): e2119891119, 2022 03 08.
Article En | MEDLINE | ID: mdl-35235458

Both neuronal and genetic mechanisms regulate brain function. While there are excellent methods to study neuronal activity in vivo, there are no nondestructive methods to measure global gene expression in living brains. Here, we present a method, epigenetic MRI (eMRI), that overcomes this limitation via direct imaging of DNA methylation, a major gene-expression regulator. eMRI exploits the methionine metabolic pathways for DNA methylation to label genomic DNA through 13C-enriched diets. A 13C magnetic resonance spectroscopic imaging method then maps the spatial distribution of labeled DNA. We validated eMRI using pigs, whose brains have stronger similarity to humans in volume and anatomy than rodents, and confirmed efficient 13C-labeling of brain DNA. We also discovered strong regional differences in global DNA methylation. Just as functional MRI measurements of regional neuronal activity have had a transformational effect on neuroscience, we expect that the eMRI signal, both as a measure of regional epigenetic activity and as a possible surrogate for regional gene expression, will enable many new investigations of human brain function, behavior, and disease.


Brain/metabolism , DNA Methylation , Epigenesis, Genetic , Magnetic Resonance Imaging/methods , Animals , Brain/diagnostic imaging , Carbon Isotopes/metabolism , Carbon-13 Magnetic Resonance Spectroscopy , Humans , Methionine/administration & dosage , Reproducibility of Results , Swine
19.
Oncotarget ; 13: 426-438, 2022.
Article En | MEDLINE | ID: mdl-35198102

Suppressive effects of extracellular matrix (ECM) upon various cancers have been reported. Glioblastoma multiforme has poor prognosis and new therapies are desired. This work investigated the effects of a saline-soluble fraction of urinary bladder ECM (ECM-SF) upon glioma cells. Viability at 24 hours in 1, 5, or 10 mg/mL ECM-SF-spiked media was evaluated in primary glioma cells (0319, 1015, 1119), glioma cell lines (A172, T98G, U87MG, C6), and brain cell lines (HCN-2, HMC3). Viability universally decreased at 5 and 10 mg/mL with U87MG, HCN-2, and HCM3 being least sensitive. Apoptosis in 0319 and 1119 cells was confirmed via NucView 488. Bi-weekly intravenous injection of ECM-SF (120 mg/kg) for 10 weeks in Sprague-Dawley rats did not affect weight, temperature, complete blood count, or multi-organ histology (N = 5). Intratumoral injection of ECM-SF (10 uL of 30 mg/mL) at weeks 2-4 post C6 inoculation in Wistar rats increased median survival from 24.5 to 51 days (hazard ratio for death 0.22) and decreased average tumor volume at time of death from 349 mm3 to 90 mm3 over 10 weeks (N = 6). Mass spectrometry identified 2,562 protein species in ECM-SF, parent ECM, and originating tissue. These results demonstrate the suppressive effects of ECM on glioma and warrant further study.


Brain Neoplasms , Glioblastoma , Glioma , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Survival , Extracellular Matrix/metabolism , Glioblastoma/pathology , Glioma/pathology , Rats , Rats, Sprague-Dawley , Rats, Wistar
20.
Biomaterials ; 282: 121386, 2022 03.
Article En | MEDLINE | ID: mdl-35093825

Extracellular matrix (ECM) hydrogel implantation into a stroke-induced tissue cavity invokes a robust cellular immune response. However, the spatio-temporal dynamics of immune cell infiltration into peri-infarct brain tissues versus the ECM-bioscaffold remain poorly understood. We here tagged peripheral immune cells using perfluorocarbon (PFC) nanoemulsions that afford their visualization by 19F magnetic resonance imaging (MRI). Prior to ECM hydrogel implantation, only blood vessels could be detected using 19F MRI. Using "time-lapse" 19F MRI, we established the infiltration of immune cells into the peri-infarct area occurs 5-6 h post-ECM implantation. Immune cells also infiltrated through the stump of the MCA, as well as a hydrogel bridge that formed between the tissue cavity and the burr hole in the skull. Tissue-based migration into the bioscaffold was observed between 9 and 12 h with a peak signal measured between 12 and 18 h post-implantation. Fluorescence-activated cell sorting of circulating immune cells revealed that 9% of cells were labeled with PFC nanoemulsions, of which the vast majority were neutrophils (40%) or monocytes (48%). Histology at 24 h post-implantation, in contrast, indicated that macrophages (35%) were more numerous in the peri-infarct area than neutrophils (11%), whereas the vast majority of immune cells within the ECM hydrogel were neutrophils (66%). Only a small fraction (12%) of immune cells did not contain PFC nanoemulsions, indicating a low type II error for 19F MRI. 19F MRI hence provides a unique tool to improve our understanding of the spatio-temporal dynamics of immune cells invading bioscaffolds and effecting biodegradation.


Fluorocarbons , Stroke , Animals , Extracellular Matrix/metabolism , Hydrogels/metabolism , Infarction/metabolism , Magnetic Resonance Imaging , Rats , Rats, Sprague-Dawley , Stroke/diagnostic imaging , Stroke/pathology
...