Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Heart J ; 44(12): 1070-1080, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36747475

RESUMEN

AIMS: Syncope is a common and clinically challenging condition. In this study, the genetics of syncope were investigated to seek knowledge about its pathophysiology and prognostic implications. METHODS AND RESULTS: This genome-wide association meta-analysis included 56 071 syncope cases and 890 790 controls from deCODE genetics (Iceland), UK Biobank (United Kingdom), and Copenhagen Hospital Biobank Cardiovascular Study/Danish Blood Donor Study (Denmark), with a follow-up assessment of variants in 22 412 cases and 286 003 controls from Intermountain (Utah, USA) and FinnGen (Finland). The study yielded 18 independent syncope variants, 17 of which were novel. One of the variants, p.Ser140Thr in PTPRN2, affected syncope only when maternally inherited. Another variant associated with a vasovagal reaction during blood donation and five others with heart rate and/or blood pressure regulation, with variable directions of effects. None of the 18 associations could be attributed to cardiovascular or other disorders. Annotation with regard to regulatory elements indicated that the syncope variants were preferentially located in neural-specific regulatory regions. Mendelian randomization analysis supported a causal effect of coronary artery disease on syncope. A polygenic score (PGS) for syncope captured genetic correlation with cardiovascular disorders, diabetes, depression, and shortened lifespan. However, a score based solely on the 18 syncope variants performed similarly to the PGS in detecting syncope risk but did not associate with other disorders. CONCLUSION: The results demonstrate that syncope has a distinct genetic architecture that implicates neural regulatory processes and a complex relationship with heart rate and blood pressure regulation. A shared genetic background with poor cardiovascular health was observed, supporting the importance of a thorough assessment of individuals presenting with syncope.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Humanos , Estudio de Asociación del Genoma Completo/métodos , Síncope/genética , Enfermedades Cardiovasculares/genética , Sistema Nervioso Autónomo , Análisis de la Aleatorización Mendeliana
2.
Clin Microbiol Infect ; 28(6): 852-858, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35182757

RESUMEN

OBJECTIVES: The spread of SARS-CoV-2 is dependent on several factors, both biological and behavioural. The effectiveness of nonpharmaceutical interventions can be attributed largely to changes in human behaviour, but quantifying this effect remains challenging. Reconstructing the transmission tree of the third wave of SARS-CoV-2 infections in Iceland using contact tracing and viral sequence data from 2522 cases enables us to directly compare the infectiousness of distinct groups of persons. METHODS: The transmission tree enables us to model the effect that a given population prevalence of vaccination would have had on the third wave had one of three different vaccination strategies been implemented before that time. This allows us to compare the effectiveness of the strategies in terms of minimizing the number of cases, deaths, critical cases, and severe cases. RESULTS: We found that people diagnosed outside of quarantine (Rˆ=1.31) were 89% more infectious than those diagnosed while in quarantine (Rˆ=0.70) and that infectiousness decreased as a function of time spent in quarantine before diagnosis, with people diagnosed outside of quarantine being 144% more infectious than those diagnosed after ≥3 days in quarantine (Rˆ=0.54). People of working age, 16 to 66 years (Rˆ=1.08), were 46% more infectious than those outside of that age range (Rˆ=0.74). DISCUSSION: We found that vaccinating the population in order of ascending age or uniformly at random would have prevented more infections per vaccination than vaccinating in order of descending age, without significantly affecting the expected number of deaths, critical cases, or severe cases.


Asunto(s)
COVID-19 , Adolescente , Adulto , Anciano , COVID-19/epidemiología , COVID-19/prevención & control , Brotes de Enfermedades/prevención & control , Humanos , Islandia/epidemiología , Persona de Mediana Edad , Modelos Teóricos , SARS-CoV-2 , Vacunación , Adulto Joven
3.
Nat Genet ; 53(8): 1135-1142, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34282336

RESUMEN

Birth weight is a common measure of fetal growth that is associated with a range of health outcomes. It is directly affected by the fetal genome and indirectly by the maternal genome. We performed genome-wide association studies on birth weight in the genomes of the child and parents and further analyzed birth length and ponderal index, yielding a total of 243 fetal growth variants. We clustered those variants based on the effects of transmitted and nontransmitted alleles on birth weight. Out of 141 clustered variants, 22 were consistent with parent-of-origin-specific effects. We further used haplotype-specific polygenic risk scores to directly test the relationship between adult traits and birth weight. Our results indicate that the maternal genome contributes to increased birth weight through blood-glucose-raising alleles while blood-pressure-raising alleles reduce birth weight largely through the fetal genome.


Asunto(s)
Peso al Nacer/genética , Desarrollo Fetal/genética , Adulto , Glucemia/genética , Presión Sanguínea/genética , Estatura/genética , Enfermedades Cardiovasculares/genética , Femenino , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Islandia , Recién Nacido , Masculino , Modelos Genéticos , Polimorfismo de Nucleótido Simple
4.
Commun Biol ; 4(1): 706, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108613

RESUMEN

Age-related hearing impairment (ARHI) is the most common sensory disorder in older adults. We conducted a genome-wide association meta-analysis of 121,934 ARHI cases and 591,699 controls from Iceland and the UK. We identified 21 novel sequence variants, of which 13 are rare, under either additive or recessive models. Of special interest are a missense variant in LOXHD1 (MAF = 1.96%) and a tandem duplication in FBF1 covering 4 exons (MAF = 0.22%) associating with ARHI (OR = 3.7 for homozygotes, P = 1.7 × 10-22 and OR = 4.2 for heterozygotes, P = 5.7 × 10-27, respectively). We constructed an ARHI genetic risk score (GRS) using common variants and showed that a common variant GRS can identify individuals at risk comparable to carriers of rare high penetrance variants. Furthermore, we found that ARHI and tinnitus share genetic causes. This study sheds a new light on the genetic architecture of ARHI, through several rare variants in both Mendelian deafness genes and genes not previously linked to hearing.


Asunto(s)
Pérdida Auditiva/genética , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Femenino , Genes/genética , Predisposición Genética a la Enfermedad , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
5.
Eur Heart J ; 42(20): 1959-1971, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33580673

RESUMEN

AIMS: The aim of this study was to use human genetics to investigate the pathogenesis of sick sinus syndrome (SSS) and the role of risk factors in its development. METHODS AND RESULTS: We performed a genome-wide association study of 6469 SSS cases and 1 000 187 controls from deCODE genetics, the Copenhagen Hospital Biobank, UK Biobank, and the HUNT study. Variants at six loci associated with SSS, a reported missense variant in MYH6, known atrial fibrillation (AF)/electrocardiogram variants at PITX2, ZFHX3, TTN/CCDC141, and SCN10A and a low-frequency (MAF = 1.1-1.8%) missense variant, p.Gly62Cys in KRT8 encoding the intermediate filament protein keratin 8. A full genotypic model best described the p.Gly62Cys association (P = 1.6 × 10-20), with an odds ratio (OR) of 1.44 for heterozygotes and a disproportionally large OR of 13.99 for homozygotes. All the SSS variants increased the risk of pacemaker implantation. Their association with AF varied and p.Gly62Cys was the only variant not associating with any other arrhythmia or cardiovascular disease. We tested 17 exposure phenotypes in polygenic score (PGS) and Mendelian randomization analyses. Only two associated with the risk of SSS in Mendelian randomization, AF, and lower heart rate, suggesting causality. Powerful PGS analyses provided convincing evidence against causal associations for body mass index, cholesterol, triglycerides, and type 2 diabetes (P > 0.05). CONCLUSION: We report the associations of variants at six loci with SSS, including a missense variant in KRT8 that confers high risk in homozygotes and points to a mechanism specific to SSS development. Mendelian randomization supports a causal role for AF in the development of SSS.


Asunto(s)
Fibrilación Atrial , Diabetes Mellitus Tipo 2 , Marcapaso Artificial , Fibrilación Atrial/genética , Estudio de Asociación del Genoma Completo , Humanos , Canal de Sodio Activado por Voltaje NAV1.8 , Síndrome del Seno Enfermo/genética
6.
Eur Heart J ; 42(20): 1959-1971, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-36282123

RESUMEN

AIMS: The aim of this study was to use human genetics to investigate the pathogenesis of sick sinus syndrome (SSS) and the role of risk factors in its development. METHODS AND RESULTS: We performed a genome-wide association study of 6469 SSS cases and 1 000 187 controls from deCODE genetics, the Copenhagen Hospital Biobank, UK Biobank, and the HUNT study. Variants at six loci associated with SSS, a reported missense variant in MYH6, known atrial fibrillation (AF)/electrocardiogram variants at PITX2, ZFHX3, TTN/CCDC141, and SCN10A and a low-frequency (MAF = 1.1-1.8%) missense variant, p.Gly62Cys in KRT8 encoding the intermediate filament protein keratin 8. A full genotypic model best described the p.Gly62Cys association (P = 1.6 × 10-20), with an odds ratio (OR) of 1.44 for heterozygotes and a disproportionally large OR of 13.99 for homozygotes. All the SSS variants increased the risk of pacemaker implantation. Their association with AF varied and p.Gly62Cys was the only variant not associating with any other arrhythmia or cardiovascular disease. We tested 17 exposure phenotypes in polygenic score (PGS) and Mendelian randomization analyses. Only two associated with the risk of SSS in Mendelian randomization, AF, and lower heart rate, suggesting causality. Powerful PGS analyses provided convincing evidence against causal associations for body mass index, cholesterol, triglycerides, and type 2 diabetes (P > 0.05). CONCLUSION: We report the associations of variants at six loci with SSS, including a missense variant in KRT8 that confers high risk in homozygotes and points to a mechanism specific to SSS development. Mendelian randomization supports a causal role for AF in the development of SSS.


Asunto(s)
Fibrilación Atrial , Diabetes Mellitus Tipo 2 , Humanos , Síndrome del Seno Enfermo/genética , Queratina-8/genética , Estudio de Asociación del Genoma Completo , Diabetes Mellitus Tipo 2/complicaciones , Fibrilación Atrial/complicaciones , Triglicéridos , Análisis de la Aleatorización Mendeliana
7.
Nat Genet ; 50(12): 1674-1680, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30397338

RESUMEN

De novo mutations (DNMs) cause a large proportion of severe rare diseases of childhood. DNMs that occur early may result in mosaicism of both somatic and germ cells. Such early mutations can cause recurrence of disease. We scanned 1,007 sibling pairs from 251 families and identified 878 DNMs shared by siblings (ssDNMs) at 448 genomic sites. We estimated DNM recurrence probability based on parental mosaicism, sharing of DNMs among siblings, parent-of-origin, mutation type and genomic position. We detected 57.2% of ssDNMs in the parental blood. The recurrence probability of a DNM decreases by 2.27% per year for paternal DNMs and 1.78% per year for maternal DNMs. Maternal ssDNMs are more likely to be T>C mutations than paternal ssDNMs, and less likely to be C>T mutations. Depending on the properties of the DNM, the recurrence probability ranges from 0.011% to 28.5%. We have launched an online calculator to allow estimation of DNM recurrence probability for research purposes.


Asunto(s)
Familia , Patrón de Herencia , Mutación , Relaciones Padres-Hijo , Adulto , Niño , Células Germinales Embrionarias/metabolismo , Composición Familiar , Femenino , Mutación de Línea Germinal , Humanos , Patrón de Herencia/genética , Masculino , Mosaicismo , Linaje
8.
Sci Data ; 4: 170115, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28933420

RESUMEN

Understanding of sequence diversity is the cornerstone of analysis of genetic disorders, population genetics, and evolutionary biology. Here, we present an update of our sequencing set to 15,220 Icelanders who we sequenced to an average genome-wide coverage of 34X. We identified 39,020,168 autosomal variants passing GATK filters: 31,079,378 SNPs and 7,940,790 indels. Calling de novo mutations (DNMs) is a formidable challenge given the high false positive rate in sequencing datasets relative to the mutation rate. Here we addressed this issue by using segregation of alleles in three-generation families. Using this transmission assay, we controlled the false positive rate and identified 108,778 high quality DNMs. Furthermore, we used our extended family structure and read pair tracing of DNMs to a panel of phased SNPs, to determine the parent of origin of 42,961 DNMs.


Asunto(s)
Genoma Humano , Humanos , Mutación INDEL , Islandia , Polimorfismo de Nucleótido Simple
9.
Nat Genet ; 49(11): 1654-1660, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28945251

RESUMEN

A fundamental requirement for genetic studies is an accurate determination of sequence variation. While human genome sequence diversity is increasingly well characterized, there is a need for efficient ways to use this knowledge in sequence analysis. Here we present Graphtyper, a publicly available novel algorithm and software for discovering and genotyping sequence variants. Graphtyper realigns short-read sequence data to a pangenome, a variation-aware graph structure that encodes sequence variation within a population by representing possible haplotypes as graph paths. Our results show that Graphtyper is fast, highly scalable, and provides sensitive and accurate genotype calls. Graphtyper genotyped 89.4 million sequence variants in the whole genomes of 28,075 Icelanders using less than 100,000 CPU days, including detailed genotyping of six human leukocyte antigen (HLA) genes. We show that Graphtyper is a valuable tool in characterizing sequence variation in both small and population-scale sequencing studies.


Asunto(s)
Algoritmos , Genoma Humano , Técnicas de Genotipaje/instrumentación , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/estadística & datos numéricos , Alelos , Secuencia de Bases , Gráficos por Computador , Antígenos HLA/genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Alineación de Secuencia , Análisis de Secuencia de ADN/métodos , Programas Informáticos
10.
Nature ; 549(7673): 519-522, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28959963

RESUMEN

The characterization of mutational processes that generate sequence diversity in the human genome is of paramount importance both to medical genetics and to evolutionary studies. To understand how the age and sex of transmitting parents affect de novo mutations, here we sequence 1,548 Icelanders, their parents, and, for a subset of 225, at least one child, to 35× genome-wide coverage. We find 108,778 de novo mutations, both single nucleotide polymorphisms and indels, and determine the parent of origin of 42,961. The number of de novo mutations from mothers increases by 0.37 per year of age (95% CI 0.32-0.43), a quarter of the 1.51 per year from fathers (95% CI 1.45-1.57). The number of clustered mutations increases faster with the mother's age than with the father's, and the genomic span of maternal de novo mutation clusters is greater than that of paternal ones. The types of de novo mutation from mothers change substantially with age, with a 0.26% (95% CI 0.19-0.33%) decrease in cytosine-phosphate-guanine to thymine-phosphate-guanine (CpG>TpG) de novo mutations and a 0.33% (95% CI 0.28-0.38%) increase in C>G de novo mutations per year, respectively. Remarkably, these age-related changes are not distributed uniformly across the genome. A striking example is a 20 megabase region on chromosome 8p, with a maternal C>G mutation rate that is up to 50-fold greater than the rest of the genome. The age-related accumulation of maternal non-crossover gene conversions also mostly occurs within these regions. Increased sequence diversity and linkage disequilibrium of C>G variants within regions affected by excess maternal mutations indicate that the underlying mutational process has persisted in humans for thousands of years. Moreover, the regional excess of C>G variation in humans is largely shared by chimpanzees, less by gorillas, and is almost absent from orangutans. This demonstrates that sequence diversity in humans results from evolving interactions between age, sex, mutation type, and genomic location.


Asunto(s)
Envejecimiento/genética , Mutación de Línea Germinal/genética , Edad Materna , Mutagénesis , Padres , Edad Paterna , Adolescente , Adulto , Anciano , Animales , Niño , Cromosomas Humanos Par 8/genética , Evolución Molecular , Femenino , Secuencia Rica en GC , Genoma Humano/genética , Gorilla gorilla/genética , Humanos , Mutación INDEL , Islandia , Desequilibrio de Ligamiento/genética , Masculino , Persona de Mediana Edad , Tasa de Mutación , Pan troglodytes/genética , Polimorfismo de Nucleótido Simple , Pongo/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...