Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(13): 9867-9870, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38477345

RESUMEN

The generation and stabilization of gamma radiation-induced hydrogen atoms in gibbsite (Al(OH)3) nanoplates is directly related to the nature of residual ions from synthetic precursors used, whether nitrates or chlorides. The concentration of hydrogen atoms trapped in the interstitial layers of gibbsite is lower and decays faster in comparison to boehmite (AlOOH), which could affect the management of these materials in radioactive waste.

3.
Environ Sci Technol ; 58(4): 2017-2026, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38214482

RESUMEN

Understanding the dissolution of boehmite in highly alkaline solutions is important to processing complex nuclear waste stored at the Hanford (WA) and Savannah River (SC) sites in the United States. Here, we report the adsorption of model carboxylates on boehmite nanoplates in alkaline solutions and their effects on boehmite dissolution in 3 M NaOH at 80 °C. Although expectedly lower than at circumneutral pH, adsorption of oxalate occurred at pH 13, with adsorption decreasing linearly to 3 M NaOH. Classical molecular dynamics simulations suggest that the adsorption of oxalate dianions onto the boehmite surface under high pH can occur through either inner- or outer-sphere complexation mechanisms depending on adsorption sites. However, both adsorption models indicate relatively weak binding, with an energy preference of 1.26 to 2.10 kcal/mol. By preloading boehmite nanoplates with oxalate or acetate, we observed suppression of dissolution rates by 23 or 10%, respectively, compared to pure solids. Scanning electron microscopy and transmission electron microscopy characterizations revealed no detectable difference in the morphologic evolution of the dissolving boehmite materials. We conclude that preadsorbed carboxylates can persist on boehmite surfaces, decreasing the density of dissolution-active sites and thereby adding extrinsic controls on dissolution rates.


Asunto(s)
Hidróxido de Aluminio , Óxido de Aluminio , Hidróxido de Sodio , Hidróxido de Aluminio/química , Óxido de Aluminio/química , Adsorción , Oxalatos
4.
ACS Appl Mater Interfaces ; 13(35): 41372-41395, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34448558

RESUMEN

While antioxidants are widely known as natural components of healthy food and drinks or as additives to commercial polymer materials to prevent their degradation, recent years have seen increasing interest in enhancing the antioxidant functionality of newly developed polymer materials and coatings. This paper provides a critical overview and comparative analysis of multiple ways of integrating antioxidants within diverse polymer materials, including bulk films, electrospun fibers, and self-assembled coatings. Polyphenolic antioxidant moieties with varied molecular architecture are in the focus of this Review, because of their abundance, nontoxic nature, and potent antioxidant activity. Polymer materials with integrated polyphenolic functionality offer opportunities and challenges that span from the fundamentals to their applications. In addition to the traditional blending of antioxidants with polymer materials, developments in surface grafting and assembly via noncovalent interaction for controlling localization versus migration of antioxidant molecules are discussed. The versatile chemistry of polyphenolic antioxidants offers numerous possibilities for programmed inclusion of these molecules in polymer materials using not only van der Waals interactions or covalent tethering to polymers, but also via their hydrogen-bonding assembly with neutral molecules. An understanding and rational use of interactions of polyphenol moieties with surrounding molecules can enable precise control of concentration and retention versus delivery rate of antioxidants in polymer materials that are critical in food packaging, biomedical, and environmental applications.


Asunto(s)
Antioxidantes/farmacología , Polímeros/farmacología , Polifenoles/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Bacterias/efectos de los fármacos , Cápsulas/química , Embalaje de Alimentos/instrumentación , Membranas Artificiales , Nanofibras/química , Polímeros/química , Polifenoles/química , Andamios del Tejido/química
5.
Inorg Chem ; 60(13): 9820-9832, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34152139

RESUMEN

Gibbsite, bayerite, and boehmite are important aluminum (oxy)hydroxide minerals in nature and have been widely deployed in various industrial applications. They are also major components in caustic nuclear wastes stored at various U.S. locations. Knowledge of their crystallization and phase transformation processes contributes to understanding their occurrence and could help optimize waste treatment processes. While it has been reported that partial conversion of bayerite and gibbsite to boehmite occurs in basic solutions at elevated temperatures, systematic studies of factors affecting the phase transformation as well as the underlying reaction mechanisms are nonexistent, particularly in highly alkaline solutions. We explored the effects of sodium hydroxide concentrations (0.1-3 M), reaction temperatures (60-100 °C), and aluminum concentrations (0.1-1 M) on the crystallization and transformation of these aluminum (oxy)hydroxides. Detailed structural and morphological characterization by X-ray diffraction (XRD), scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR) spectrometry revealed that these processes depend largely on the reaction temperature and the Al/OH- ratio. When 1 ≤ Al/OH- ≤ 2.5, the reactions favor formation of high-crystallinity precipitates, whereas at an Al/OH- ratio of ≥2.5 precipitation ceases unless the Al concentration is higher than 1 M. We identified pseudoboehmite, bayerite, and gibbsite as intermediate phases to bayerite, gibbsite and boehmite, respectively, all of which transform via dissolution-reprecipitation. Gibbsite transforms to boehmite in both acidic and weak caustic environments at temperatures above 80 °C. However, a "bar-shaped" gibbsite morphology dominates in highly caustic environments (3 M NaOH). The findings enable a robust basis for the selection of various solid phases by tuning the reaction conditions.

6.
Biomaterials ; 268: 120586, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310537

RESUMEN

Biocompatible antibacterial coatings are highly desirable to prevent bacterial colonization on a wide range of medical devices from hip implants to skin grafts. Traditional polyelectrolytes are unable to directly form coatings with cationic antibiotics at neutral pH and suffer from high degrees of antibiotic release upon exposure to physiological concentrations of salt. Here, novel inorganic-organic hybrid polymer coatings based on direct layer-by-layer assembly of anionic polyphosphazenes (PPzs) of various degrees of fluorination with cationic antibiotics (polymyxin B, colistin, gentamicin, and neomycin) are reported. The coatings displayed low levels of antibiotic release upon exposure to salt and pH-triggered response of controlled doses of antibiotics. Importantly, coatings remained highly surface active against Escherichia coli and Staphylococcus aureus, even after 30 days of pre-exposure to physiological conditions (bacteria-free) or after repeated bacterial challenge. Moreover, coatings displayed low (<1%) hemolytic activity for both rabbit and porcine blood. Coatings deposited on either hard (Si wafers) or soft (electrospun fiber matrices) materials were non-toxic towards fibroblasts (NIH/3T3) and displayed controllable fibroblast adhesion via PPz fluorination degree. Finally, coatings showed excellent antibacterial activity in ex vivo pig skin studies. Taken together, these results suggest a new avenue to form highly tunable, biocompatible polymer coatings for medical device surfaces.


Asunto(s)
Antibacterianos , Materiales Biocompatibles Revestidos , Animales , Antibacterianos/farmacología , Compuestos Organofosforados , Polímeros , Conejos , Staphylococcus aureus , Porcinos
7.
ACS Appl Mater Interfaces ; 12(9): 11026-11035, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32048504

RESUMEN

We report on mechanically strong, water-insoluble hydrogen-bonded nanofiber mats composed of a hydrophilic polymer and a natural polyphenol that exhibit prolonged antioxidant activity. The high performance of fibrous mats resulted from the formation of a network of hydrogen bonds between a low-molecular-weight polyphenol (tannic acid, TA) and a water-soluble polymer (polyvinylpyrrolidone, PVP) and could be precisely controlled by the TA-to-PVP ratio. Dramatic enhancement (5- to 10-fold) in tensile strength, toughness, and Young's moduli of the PVP/TA fiber mats (as compared to those of pristine PVP fibers) was achieved at the maximum density of hydrogen bonds, which occurred at ∼0.2-0.4 molar fractions of TA. The formation of hydrogen bonds was confirmed by an increase in the glass-transition temperature of the polymer after binding with TA. When exposed to water, the fibers exhibited composition- and pH-dependent stabilities, with the TA-enriched fibers fully preserving their integrity in acidic and neutral media. Importantly, the fiber mats exhibited strong antioxidant activity with dual (burst and prolonged) activity profiles, which could be controlled via fiber composition, a feature useful for controlling radical-scavenging rates in environmental and biological applications.

8.
FEBS J ; 280(13): 3109-19, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23551929

RESUMEN

The fluorescent probes Nile Red (nonsteroidal dye) and 25-{N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-methyl]amino}-27-norcholesterol (25-NBD-cholesterol) (a cholesterol analog) were evaluated as novel substrates for steroid-converting oxidoreductases. Docking simulations with autodock showed that Nile Red fits well into the substrate-binding site of cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) (binding energy value of -8.3 kcal·mol⁻¹). Recombinant Saccharomyces cerevisiae and Yarrowia lipolytica, both expressing CYP17A1, were found to catalyze the conversion of Nile Red into two N-dealkylated derivatives. The conversion by the yeasts was shown to increase in the cases of coexpression of electron-donating partners of CYP17A1. The highest specific activity value (1.30 ± 0.02 min⁻¹) was achieved for the strain Y. lipolytica DC5, expressing CYP17A1 and the yeast's NADPH-cytochrome P450 reductase. The dye was also metabolized by pure CYP17A1 into the N-dealkylated derivatives, and gave a type I difference spectrum when titrated into low-spin CYP17A1. Analogously, docking simulations demonstrated that 25-NBD-cholesterol binds into the active site of the microbial cholesterol oxidase (CHOX) from Brevibacterium sterolicum (binding energy value of -5.6 kcal·mol⁻¹). The steroid was found to be converted into its 4-en-3-one derivative by CHOX (K(m) and k(cat) values were estimated to be 58.1 ± 5.9 µM and 0.66 ± 0.14 s⁻¹, respectively). The 4-en-3-one derivative was also detected as the product of 25-NBD-cholesterol oxidation with both pure microbial cholesterol dehydrogenase (CHDH) and a pathogenic bacterium, Pseudomonas aeruginosa, possessing CHOXs and CHDHs. These results provide novel opportunities for investigation of the structure-function relationships of the aforementioned oxidoreductases, which catalyze essential steps of steroid bioconversion in mammals (CYP17A1) and bacteria (CHOX and CHDH), with fluorescence-based techniques.


Asunto(s)
4-Cloro-7-nitrobenzofurazano/análogos & derivados , Proteínas Bacterianas/metabolismo , Colesterol Oxidasa/metabolismo , Colesterol/análogos & derivados , Colorantes Fluorescentes/metabolismo , Oxazinas/metabolismo , Oxidorreductasas/metabolismo , Esteroide 17-alfa-Hidroxilasa/metabolismo , 4-Cloro-7-nitrobenzofurazano/química , 4-Cloro-7-nitrobenzofurazano/metabolismo , Alquilación , Proteínas Bacterianas/química , Brevibacterium/enzimología , Brevibacterium/metabolismo , Dominio Catalítico , Colesterol/química , Colesterol/metabolismo , Colesterol Oxidasa/química , Colorantes Fluorescentes/química , Proteínas Fúngicas/metabolismo , Humanos , Cinética , Conformación Molecular , Simulación del Acoplamiento Molecular , NADPH-Ferrihemoproteína Reductasa/metabolismo , Oxazinas/química , Oxidación-Reducción , Oxidorreductasas/química , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Esteroide 17-alfa-Hidroxilasa/química , Esteroide 17-alfa-Hidroxilasa/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...