Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
NPJ Parkinsons Dis ; 10(1): 107, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773105

RESUMEN

Alpha-synuclein (αS)-rich Lewy bodies and neurites in the cerebral cortex correlate with the presence of dementia in Parkinson disease (PD) and Dementia with Lewy bodies (DLB), but whether αS influences synaptic vesicle dynamics in human cortical neurons is unknown. Using a new iPSC-based assay platform for measuring synaptic vesicle cycling, we found that in human cortical glutamatergic neurons, increased αS from either transgenic expression or triplication of the endogenous locus in patient-derived neurons reduced synaptic vesicle cycling under both stimulated and spontaneous conditions. Thus, using a robust, easily adopted assay platform, we show for the first time αS-induced synaptic dysfunction in human cortical neurons, a key cellular substrate for PD dementia and DLB.

2.
Sci Adv ; 9(46): eadj1454, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976363

RESUMEN

Parkinson's disease (PD) is characterized by conversion of soluble α-synuclein (αS) into intraneuronal aggregates and degeneration of neurons and neuronal processes. Indications that women with early-stage PD display milder neurodegenerative features suggest that female sex partially protects against αS pathology. We previously reported that female sex and estradiol improved αS homeostasis and PD-like phenotypes in E46K-amplified (3K) αS mice. Here, we aimed to further dissect mechanisms that drive this sex dimorphism early in disease. We observed that synaptic abnormalities were delayed in females and improved by estradiol, mediated by local estrogen receptor alpha (ERα). Aberrant ERα distribution in 3K compared to wild-type mice was paired with its decreased palmitoylation. Treatment with ML348, a de-palmitoylation inhibitor, increased ERα availability and soluble αS homeostasis, ameliorating synaptic plasticity and cognitive and motor phenotypes. Our finding that sex differences in early-disease αS-induced synaptic impairment in 3KL mice are in part mediated by palmitoylated ERα may have functional and pathogenic implications for clinical PD.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Animales , Femenino , Humanos , Masculino , Ratones , Modelos Animales de Enfermedad , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Hipocampo/patología , Lipoilación , Ratones Transgénicos , Enfermedad de Parkinson/genética
3.
Sci Signal ; 16(772): eadd7220, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36787382

RESUMEN

Synaptotagmin-11 (Syt11) is a vesicle-trafficking protein that is linked genetically to Parkinson's disease (PD). Likewise, the protein α-synuclein regulates vesicle trafficking, and its abnormal aggregation in neurons is the defining cytopathology of PD. Because of their functional similarities in the same disease context, we investigated whether the two proteins were connected. We found that Syt11 was palmitoylated in mouse and human brain tissue and in cultured cortical neurons and that this modification to Syt11 disrupted α-synuclein homeostasis in neurons. Palmitoylation of two cysteines adjacent to the transmembrane domain, Cys39 and Cys40, localized Syt11 to digitonin-insoluble portions of intracellular membranes and protected it from degradation by the endolysosomal system. In neurons, palmitoylation of Syt11 increased its abundance and enhanced the binding of α-synuclein to intracellular membranes. As a result, the abundance of the physiologic tetrameric form of α-synuclein was decreased, and that of its aggregation-prone monomeric form was increased. These effects were replicated by overexpression of wild-type Syt11 but not a palmitoylation-deficient mutant. These findings suggest that palmitoylation-mediated increases in Syt11 amounts may promote pathological α-synuclein aggregation in PD.


Asunto(s)
Enfermedad de Parkinson , Ratones , Animales , Humanos , Sinaptotagminas/genética , Sinaptotagminas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Lipoilación , Neuronas/metabolismo
4.
NPJ Parkinsons Dis ; 8(1): 74, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680956

RESUMEN

Synucleinopathy (Parkinson's disease (PD); Lewy body dementia) disease-modifying treatments represent a huge unmet medical need. Although the PD-causing protein α-synuclein (αS) interacts with lipids and fatty acids (FA) physiologically and pathologically, targeting FA homeostasis for therapeutics is in its infancy. We identified the PD-relevant target stearoyl-coA desaturase: inhibiting monounsaturated FA synthesis reversed PD phenotypes. However, lipid degradation also generates FA pools. Here, we identify the rate-limiting lipase enzyme, LIPE, as a candidate target. Decreasing LIPE in human neural cells reduced αS inclusions. Patient αS triplication vs. corrected neurons had increased pSer129 and insoluble αS and decreased αS tetramer:monomer ratios. LIPE inhibition rescued all these and the abnormal unfolded protein response. LIPE inhibitors decreased pSer129 and restored tetramer:monomer equilibrium in αS E46K-expressing human neurons. LIPE reduction in vivo alleviated αS-induced dopaminergic neurodegeneration in Caenorhabditis elegans. Co-regulating FA synthesis and degradation proved additive in rescuing PD phenotypes, signifying co-targeting as a therapeutic strategy.

5.
Mov Disord ; 36(2): 348-359, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33103814

RESUMEN

BACKGROUND: Synucleinopathies, including Parkinson's disease (PD), are characterized by α-synuclein (αS) cytoplasmic inclusions. αS-dependent vesicle-trafficking defects are important in PD pathogenesis, but their mechanisms are not well understood. Protein palmitoylation, post-translational addition of the fatty acid palmitate to cysteines, promotes trafficking by anchoring specific proteins to the vesicle membrane. αS itself cannot be palmitoylated as it lacks cysteines, but it binds to membranes, where palmitoylation occurs, via an amphipathic helix. We hypothesized that abnormal αS membrane-binding impairs trafficking by disrupting palmitoylation. Accordingly, we investigated the therapeutic potential of increasing cellular palmitoylation. OBJECTIVES: We asked whether upregulating palmitoylation by inhibiting the depalmitoylase acyl-protein-thioesterase-1 (APT1) ameliorates pathologic αS-mediated cellular phenotypes and sought to identify the mechanism. METHODS: Using human neuroblastoma cells, rat neurons, and iPSC-derived PD patient neurons, we examined the effects of pharmacologic and genetic downregulation of APT1 on αS-associated phenotypes. RESULTS: APT1 inhibition or knockdown decreased αS cytoplasmic inclusions, reduced αS serine-129 phosphorylation (a PD neuropathological marker), and protected against αS-dependent neurotoxicity. We identified the APT1 substrate microtubule-associated-protein-6 (MAP6), which binds to vesicles in a palmitoylation-dependent manner, as a key mediator of these effects. Mechanistically, we found that pathologic αS accelerated palmitate turnover on MAP6, suggesting that APT1 inhibition corrects a pathological αS-dependent palmitoylation deficit. We confirmed the disease relevance of this mechanism by demonstrating decreased MAP6 palmitoylation in neurons from αS gene triplication patients. CONCLUSIONS: Our findings demonstrate a novel link between the fundamental process of palmitoylation and αS pathophysiology. Upregulating palmitoylation represents an unexplored therapeutic strategy for synucleinopathies. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Humanos , Lipoilación , Neuronas/metabolismo , Ratas , Regulación hacia Arriba , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
6.
Int J Mol Sci ; 21(15)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707907

RESUMEN

Genetic and biochemical evidence attributes neuronal loss in Parkinson's disease (PD) and related brain diseases to dyshomeostasis of the 14 kDa protein α-synuclein (αS). There is no consensus on how αS exerts toxicity. Explanations range from disturbed vesicle biology to proteotoxicity caused by fibrillar aggregates. To probe these mechanisms further, robust cellular toxicity models are needed, but their availability is limited. We previously reported that a shift from dynamic multimers to monomers is an early event in αS dyshomeostasis, as caused by familial PD (fPD)-linked mutants such as E46K. Excess monomers accumulate in round, lipid-rich inclusions. Engineered αS '3K' (E35K+E46K+E61K) amplifies E46K, causing a PD-like, L-DOPA-responsive motor phenotype in transgenic mice. Here, we present a cellular model of αS neurotoxicity after transducing human neuroblastoma cells to express yellow fluorescent protein (YFP)-tagged αS 3K in a doxycycline-dependent manner. αS-3K::YFP induction causes pronounced growth defects that accord with cell death. We tested candidate compounds for their ability to restore growth, and stearoyl-CoA desaturase (SCD) inhibitors emerged as a molecule class with growth-restoring capacity, but the therapeutic window varied among compounds. The SCD inhibitor MF-438 fully restored growth while exerting no apparent cytotoxicity. Our αS bioassay will be useful for elucidating compound mechanisms, for pharmacokinetic studies, and for compound/genetic screens.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neuroblastoma/metabolismo , Piridazinas/farmacología , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Tiadiazoles/farmacología , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidad , Proteínas Bacterianas , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Enfermedad por Cuerpos de Lewy/tratamiento farmacológico , Enfermedad por Cuerpos de Lewy/metabolismo , Proteínas Luminiscentes , Mutación , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Estearoil-CoA Desaturasa/metabolismo , alfa-Sinucleína/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(41): 20760-20769, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548371

RESUMEN

Microscopy of Lewy bodies in Parkinson's disease (PD) suggests they are not solely filamentous deposits of α-synuclein (αS) but also contain vesicles and other membranous material. We previously reported the existence of native αS tetramers/multimers and described engineered mutations of the αS KTKEGV repeat motifs that abrogate the multimers. The resultant excess monomers accumulate in lipid membrane-rich inclusions associated with neurotoxicity exceeding that of natural familial PD mutants, such as E46K. Here, we use the αS "3K" (E35K+E46K+E61K) engineered mutation to probe the mechanisms of reported small-molecule modifiers of αS biochemistry and then identify compounds via a medium-throughput automated screen. αS 3K, which forms round, vesicle-rich inclusions in cultured neurons and causes a PD-like, l-DOPA-responsive motor phenotype in transgenic mice, was fused to YFP, and fluorescent inclusions were quantified. Live-cell microscopy revealed the highly dynamic nature of the αS inclusions: for example, their rapid clearance by certain known modulators of αS toxicity, including tacrolimus (FK506), isradipine, nilotinib, nortriptyline, and trifluoperazine. Our automated 3K cellular screen identified inhibitors of stearoyl-CoA desaturase (SCD) that robustly prevent the αS inclusions, reduce αS 3K neurotoxicity, and prevent abnormal phosphorylation and insolubility of αS E46K. SCD inhibition restores the E46K αS multimer:monomer ratio in human neurons, and it actually increases this ratio for overexpressed wild-type αS. In accord, conditioning 3K cells in saturated fatty acids rescued, whereas unsaturated fatty acids worsened, the αS phenotypes. Our cellular screen allows probing the mechanisms of synucleinopathy and refining drug candidates, including SCD inhibitors and other lipid modulators.


Asunto(s)
Cuerpos de Inclusión/efectos de los fármacos , Lípidos/análisis , Mutación , Neuroblastoma/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Estearoil-CoA Desaturasa/antagonistas & inhibidores , alfa-Sinucleína/química , Animales , Línea Celular , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Ratones Transgénicos , Modelos Biológicos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Estearoil-CoA Desaturasa/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
Mol Cell ; 73(5): 1001-1014.e8, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30527540

RESUMEN

In Parkinson's disease (PD), α-synuclein (αS) pathologically impacts the brain, a highly lipid-rich organ. We investigated how alterations in αS or lipid/fatty acid homeostasis affect each other. Lipidomic profiling of human αS-expressing yeast revealed increases in oleic acid (OA, 18:1), diglycerides, and triglycerides. These findings were recapitulated in rodent and human neuronal models of αS dyshomeostasis (overexpression; patient-derived triplication or E46K mutation; E46K mice). Preventing lipid droplet formation or augmenting OA increased αS yeast toxicity; suppressing the OA-generating enzyme stearoyl-CoA-desaturase (SCD) was protective. Genetic or pharmacological SCD inhibition ameliorated toxicity in αS-overexpressing rat neurons. In a C. elegans model, SCD knockout prevented αS-induced dopaminergic degeneration. Conversely, we observed detrimental effects of OA on αS homeostasis: in human neural cells, excess OA caused αS inclusion formation, which was reversed by SCD inhibition. Thus, monounsaturated fatty acid metabolism is pivotal for αS-induced neurotoxicity, and inhibiting SCD represents a novel PD therapeutic approach.


Asunto(s)
Antiparkinsonianos/farmacología , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolómica/métodos , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Estearoil-CoA Desaturasa/antagonistas & inhibidores , alfa-Sinucleína/toxicidad , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Línea Celular , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/enzimología , Corteza Cerebral/patología , Diglicéridos/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/enzimología , Neuronas Dopaminérgicas/patología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/enzimología , Células Madre Pluripotentes Inducidas/patología , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/enzimología , Ratones Endogámicos C57BL , Ratones Transgénicos , Terapia Molecular Dirigida , Degeneración Nerviosa , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/enzimología , Células-Madre Neurales/patología , Neuronas/enzimología , Neuronas/patología , Ácido Oléico/metabolismo , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Ratas Sprague-Dawley , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Estearoil-CoA Desaturasa/metabolismo , Triglicéridos/metabolismo , alfa-Sinucleína/genética
10.
Neuron ; 71(1): 131-41, 2011 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-21745643

RESUMEN

PSD-95, a principal scaffolding component of the postsynaptic density, is targeted to synapses by palmitoylation, where it couples NMDA receptor stimulation to production of nitric oxide (NO) by neuronal nitric oxide synthase (nNOS). Here, we show that PSD-95 is physiologically S-nitrosylated. We identify cysteines 3 and 5, which are palmitoylated, as sites of nitrosylation, suggesting a competition between these two modifications. In support of this hypothesis, physiologically produced NO inhibits PSD-95 palmitoylation in granule cells of the cerebellum, decreasing the number of PSD-95 clusters at synaptic sites. Further, decreased palmitoylation, as seen in heterologous cells treated with 2-bromopalmitate or in ZDHHC8 knockout mice deficient in a PSD-95 palmitoyltransferase, results in increased PSD-95 nitrosylation. These data support a model in which NMDA-mediated production of NO regulates targeting of PSD-95 to synapses via mutually competitive cysteine modifications. Thus, differential modification of cysteines may represent a general paradigm in signal transduction.


Asunto(s)
Guanilato-Quinasas/metabolismo , Lipoilación/genética , Proteínas de la Membrana/metabolismo , Óxido Nítrico/metabolismo , Sinapsis/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Homólogo 4 de la Proteína Discs Large , Células HEK293 , Humanos , Lipoilación/efectos de los fármacos , Ratones , Ratones Noqueados , N-Metilaspartato/farmacología , Palmitatos/farmacología
11.
Proc Natl Acad Sci U S A ; 104(8): 2950-5, 2007 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-17293453

RESUMEN

Serine racemase (SR) generates D-serine, a coagonist with glutamate at NMDA receptors. We show that SR is physiologically S-nitrosylated leading to marked inhibition of enzyme activity. Inhibition involves interactions with the cofactor ATP reflecting juxtaposition of the ATP-binding site and cysteine-113 (C113), the site for physiological S-nitrosylation. NMDA receptor physiologically enhances SR S-nitrosylation by activating neuronal nitric-oxide synthase (nNOS). These findings support a model whereby postsynaptic stimulation of nitric-oxide (NO) formation feeds back to presynaptic cells to S-nitrosylate SR and decrease D-serine availability to postsynaptic NMDA receptors.


Asunto(s)
Retroalimentación Fisiológica/efectos de los fármacos , Óxido Nítrico/farmacología , Racemasas y Epimerasas/metabolismo , S-Nitrosoglutatión/farmacología , Serina/biosíntesis , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Coenzimas/metabolismo , Cisteína/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Ratones , Modelos Moleculares , Modelos Neurológicos , Datos de Secuencia Molecular , Óxido Nítrico Sintasa de Tipo I/metabolismo , Racemasas y Epimerasas/química , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Mol Cell Biol ; 26(18): 7005-15, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16943440

RESUMEN

The Fanconi anemia (FA) pathway is a DNA damage-activated signaling pathway which regulates cellular resistance to DNA cross-linking agents. Cloned FA genes and proteins cooperate in this pathway, and monoubiquitination of FANCD2 is a critical downstream event. The cell cycle checkpoint kinase ATR is required for the efficient monoubiquitination of FANCD2, while another checkpoint kinase, ATM, directly phosphorylates FANCD2 and controls the ionizing radiation (IR)-inducible intra-S-phase checkpoint. In the present study, we identify two novel DNA damage-inducible phosphorylation sites on FANCD2, threonine 691 and serine 717. ATR phosphorylates FANCD2 on these two sites, thereby promoting FANCD2 monoubiquitination and enhancing cellular resistance to DNA cross-linking agents. Phosphorylation of the sites is required for establishment of the intra-S-phase checkpoint response. IR-inducible phosphorylation of threonine 691 and serine 717 is also dependent on ATM and is more strongly impaired when both ATM and ATR are knocked down. Threonine 691 is phosphorylated during normal S-phase progression in an ATM-dependent manner. These findings further support the functional connection of ATM/ATR kinases and FANCD2 in the DNA damage response and support a role for the FA pathway in the coordination of the S phase of the cell cycle.


Asunto(s)
Resistencia a Antineoplásicos , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/química , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Mitomicina/farmacología , Secuencia de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Reactivos de Enlaces Cruzados/farmacología , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Serina/metabolismo , Treonina/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina/metabolismo , Rayos Ultravioleta
13.
Carcinogenesis ; 27(5): 883-92, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16490739

RESUMEN

The cellular response to DNA damage is composed of cell cycle checkpoint and DNA repair mechanisms that serve to ensure proper replication of the genome prior to cell division. The function of the DNA damage response during DNA replication in S-phase is critical to this process. Recent evidence has suggested a number of interrelationships of DNA replication and cellular DNA damage responses. These include S-phase checkpoints which suppress replication initiation or elongation in response to DNA damage. Also, many components of the DNA damage response are required either for the stabilization of, or for restarting, stalled replication forks. Further, translesion synthesis permits DNA replication to proceed in the presence of DNA damage and can be coordinated with subsequent repair by homologous recombination (HR). Finally, cohesion of sister chromatids is established coincident with DNA replication and is required for subsequent DNA repair by homologous recombination. Here we review these processes, all of which occur at, or are related to, the advancing replication fork. We speculate that these multiple interdependencies of DNA replication and DNA damage responses integrate the many steps necessary to ensure accurate duplication of the genome.


Asunto(s)
Daño del ADN , Replicación del ADN , Animales , Reparación del ADN , Humanos , Modelos Biológicos , Modelos Genéticos , Recombinación Genética , Fase S , Intercambio de Cromátides Hermanas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA