Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
J Pharmacol Exp Ther ; 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38409115

The number of opioid overdose deaths has increased significantly over the past decade. The life-threatening effect of opioids is hypoventilation that can be reversed by the µ-opioid receptor (MOR) antagonist naloxone; however, because of the very short duration of action of naloxone, re-emergence of MOR agonist-induced hypoventilation can occur, requiring additional doses of naloxone. The MOR antagonist methocinnamox (MCAM) antagonizes hypoventilation by the non-morphinan fentanyl and the morphinan heroin in laboratory animals with an unusually long duration of action. Whole-body plethysmography was used to compare the potency and effectiveness of MCAM and naloxone for preventing and reversing hypoventilation by fentanyl, heroin, and the ultra-potent and longer-acting fentanyl analogs carfentanil and 3-methylfentanyl in male rats breathing normal air. Sessions comprised a 45-minute habituation period followed by intravenous (i.v.) administration of saline or an acute dose of MOR agonist. The rank order of potency to decrease ventilation was 3-methylfentanyl > carfentanil > fentanyl > heroin. MCAM (0.0001-0.1 mg/kg) and naloxone (0.0001-0.01 mg/kg) dose-dependently reversed hypoventilation by 3-methylfentanyl (0.01 mg/kg), carfentanil (0.01 mg/kg), fentanyl (0.1 mg/kg), or heroin (3.2 mg/kg). For prevention studies, MCAM, naloxone, or vehicle was administered i.v. 22, 46, or 70 hours prior to a MOR agonist. When administered 22 hours earlier, MCAM (0.1-1.0 mg/kg) but not naloxone (1.0 mg/kg) prevented hypoventilation by each MOR agonist. This study demonstrates the effectiveness of MCAM to reverse and prevent hypoventilation by MOR agonists including ultra-potent fentanyl analogs that have a long duration of action. Significance Statement The number of opioid overdose deaths increased over the past decade despite the availability of antagonists that can prevent and reverse the effects of opioids. This study demonstrates the effectiveness and long duration of action of the µ-opioid receptor (MOR) antagonist methocinnamox (MCAM) for reversing and preventing hypoventilation by MOR agonists including ultra-potent fentanyl analogs. These results provide support for the notion that MCAM has the potential to positively impact the ongoing opioid crisis by reversing and preventing opioid overdose.

2.
J Pharmacol Exp Ther ; 388(2): 244-256, 2024 01 17.
Article En | MEDLINE | ID: mdl-37739803

The number of drug overdoses and deaths has increased significantly over the past decade and co-use of opioids and stimulants is associated with greater likelihood of overdose and decreased likelihood of accessing treatment, compared with use of opioids alone. Potential adverse effects of opioid/stimulant mixtures, particularly methamphetamine, are not well characterized. Two structurally different drugs with agonist properties at µ-opioid receptors (MOR), fentanyl and heroin, and d-methamphetamine, alone and in mixtures, were assessed for their effects on ventilation in rats breathing normal air. Whole-body phethysmography chambers were equipped with a tower and swivel allowing infusions to indwelling intravenous catheters. After a 45-minute habituation period, saline, fentanyl, heroin, or d-methamphetamine, alone and in mixtures, was administered. Five minutes later, the opioid receptor antagonist naloxone or vehicle was injected. Fentanyl (0.0032-0.1 mg/kg) and heroin (0.32-3.2 mg/kg) decreased ventilation [frequency (f) and tidal volume (VT)] in a dose-related manner whereas d-methamphetamine (0.1-3.2 mg/kg) increased f to >400% of control and decreased VT to <60% of control, overall increasing minute volume (product of f and VT) to >240% of control. When combined, d-methamphetamine (0.1-3.2 mg/kg) attenuated the ventilatory depressant effects of fentanyl (0.1 mg/kg) and heroin (3.2 mg/kg). d-Methamphetamine did not alter the potency of naloxone to reverse the ventilatory depressant effects of fentanyl or heroin. These studies demonstrate that d-methamphetamine can attenuate the ventilatory depressant effects of moderate doses of opioid receptor agonists while not altering the potency of naloxone to reverse opioid hypoventilation. SIGNIFICANCE STATEMENT: Co-use of opioids and stimulants is associated with greater likelihood of overdose and decreased likelihood of accessing treatment, compared with use of opioids alone. Potential adverse effects of opioid/stimulant mixtures are not well characterized. This study reports that 1) d-methamphetamine attenuates the ventilatory depressant effects of moderate doses of two structurally different opioid receptor agonists, fentanyl and heroin, and 2) d-methamphetamine does not alter potency or effectiveness of naloxone to reverse the ventilatory depressant effects of these opioid receptor agonists.


Drug Overdose , Methamphetamine , Male , Animals , Rats , Heroin/pharmacology , Fentanyl/adverse effects , Analgesics, Opioid/adverse effects , Methamphetamine/pharmacology , Naloxone , Drug Overdose/drug therapy , Receptors, Opioid
3.
J Pharmacol Exp Ther ; 385(3): 180-192, 2023 06.
Article En | MEDLINE | ID: mdl-37019472

Mitragynine, an opioidergic alkaloid present in Mitragyna speciosa (kratom), is metabolized by cytochrome P450 3A (CYP3A) to 7-hydroxymitragynine, a more potent opioid receptor agonist. The extent to which conversion to 7-hydroxymitragynine mediates the in vivo effects of mitragynine is unclear. The current study examined how CYP3A inhibition (ketoconazole) modifies the pharmacokinetics of mitragynine in rat liver microsomes in vitro. The study further examined how ketoconazole modifies the discriminative stimulus and antinociceptive effects of mitragynine in rats. Ketoconazole [30 mg/kg, oral gavage (o.g.)] increased systemic exposure to mitragynine (13.3 mg/kg, o.g.) by 120% and 7-hydroxymitragynine exposure by 130%. The unexpected increase in exposure to 7-hydroxymitragynine suggested that ketoconazole inhibits metabolism of both mitragynine and 7-hydroxymitragynine, a finding confirmed in rat liver microsomes. In rats discriminating 3.2 mg/kg morphine from vehicle under a fixed-ratio schedule of food delivery, ketoconazole pretreatment increased the potency of both mitragynine (4.7-fold) and 7-hydroxymitragynine (9.7-fold). Ketoconazole did not affect morphine's potency. Ketoconazole increased the antinociceptive potency of 7-hydroxymitragynine by 4.1-fold. Mitragynine (up to 56 mg/kg, i.p.) lacked antinociceptive effects both in the presence and absence of ketoconazole. These results suggest that both mitragynine and 7-hydroxymitragynine are cleared via CYP3A and that 7-hydroxymitragynine is formed as a metabolite of mitragynine by other routes. These results have implications for kratom use in combination with numerous medications and citrus juices that inhibit CYP3A. SIGNIFICANCE STATEMENT: Mitragynine is an abundant kratom alkaloid that exhibits low efficacy at the µ-opioid receptor (MOR). Its metabolite, 7-hydroxymitragynine, is also an MOR agonist but with higher affinity and efficacy than mitragynine. Our results in rats demonstrate that cytochrome P450 3A (CYP3A) inhibition can increase the systematic exposure of both mitragynine and 7-hydroxymitragynine and their potency to produce MOR-mediated behavioral effects. These data highlight potential interactions between kratom and CYP3A inhibitors, which include numerous medications and citrus juices.


Cytochrome P-450 CYP3A , Secologanin Tryptamine Alkaloids , Rats , Animals , Ketoconazole/pharmacology , Secologanin Tryptamine Alkaloids/metabolism , Morphine/pharmacology , Analgesics, Opioid/pharmacology
4.
J Pharmacol Exp Ther ; 383(3): 182-198, 2022 12.
Article En | MEDLINE | ID: mdl-36153006

The primary kratom alkaloid mitragynine is proposed to act through multiple mechanisms, including actions at µ-opioid receptors (MORs) and adrenergic-α 2 receptors (Aα 2Rs), as well as conversion in vivo to a MOR agonist metabolite (i.e., 7-hydroxymitragynine). Aα 2R and MOR agonists can produce antinociceptive synergism. Here, contributions of both receptors to produce mitragynine-related effects were assessed by measuring receptor binding in cell membranes and, in rats, pharmacological behavioral effect antagonism studies. Mitragynine displayed binding affinity at both receptors, whereas 7-hydroxymitragynine only displayed MOR binding affinity. Compounds were tested for their capacity to decrease food-maintained responding and rectal temperature and to produce antinociception in a hotplate test. Prototypical MOR agonists and 7-hydroxymitragynine, but not mitragynine, produced antinociception. MOR agonist and 7-hydroxymitragynine rate-deceasing and antinociceptive effects were antagonized by the opioid antagonist naltrexone but not by the Aα 2R antagonist yohimbine. Hypothermia only resulted from reference Aα 2R agonists. The rate-deceasing and hypothermic effects of reference Aα 2R agonists were antagonized by yohimbine but not naltrexone. Neither naltrexone nor yohimbine antagonized the rate-decreasing effects of mitragynine. Mitragynine and 7-hydroxymitragynine increased the potency of the antinociceptive effects of Aα 2R but not MOR reference agonists. Only mitragynine produced hypothermic effects. Isobolographic analyses for the rate-decreasing effects of the reference Aα 2R and MOR agonists were also conducted. These results suggest mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα 2R and MOR agonists. When combined with Aα 2R agonists, mitragynine could also produce hypothermic synergism. SIGNIFICANCE STATEMENT: Mitragynine is proposed to target the µ-opioid receptor (MOR) and adrenergic-α2 receptor (Aα2R) and to produce behavioral effects through conversion to its MOR agonist metabolite 7-hydroxymitragynine. Isobolographic analyses indicated supra-additivity in some dose ratio combinations. This study suggests mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα2R and MOR agonists. When combined with Aα2R agonists, mitragynine could also produce hypothermic synergism.


Mitragyna , Secologanin Tryptamine Alkaloids , Animals , Rats , Adrenergic alpha-2 Receptor Agonists , Analgesics, Opioid/pharmacology , Mitragyna/chemistry , Naltrexone/pharmacology , Receptors, Adrenergic, alpha-2 , Receptors, Opioid, mu/agonists , Secologanin Tryptamine Alkaloids/pharmacology , Yohimbine/pharmacology
5.
Drug Metab Dispos ; 50(2): 158-167, 2022 02.
Article En | MEDLINE | ID: mdl-34759012

Kratom (Mitragyna speciosa), a Southeast Asian tree, has been used for centuries in pain relief and mitigation of opium withdrawal symptoms. Mitragynine (MTG), the major kratom alkaloid, is being investigated for its potential to provide analgesia without the deleterious effects associated with typical opioids. Concerns have been raised regarding the active metabolite of MTG, 7-hydroxymitragynine (7HMG), which has higher affinity and efficacy at µ-opioid receptors than MTG. Here we investigated the hotplate antinociception, pharmacokinetics, and tissue distribution of MTG and 7HMG at equianalgesic oral doses in male and female C57BL/6 mice to determine the extent to which 7HMG metabolized from MTG accounts for the antinociceptive effects of MTG and investigate any sex differences. The mechanism of action was examined by performing studies with the opioid receptor antagonist naltrexone. A population pharmacokinetic/pharmacodynamic model was developed to predict the behavioral effects after administration of various doses of MTG and 7HMG. When administered alone, 7HMG was 2.8-fold more potent than MTG to produce antinociception. At equivalent effective doses of MTG and 7HMG, there was a marked difference in the maximum brain concentration of 7HMG achieved, i.e., 11-fold lower as a metabolite of MTG. The brain concentration of 7HMG observed 4 hours post administration, producing an analgesic effect <10%, was still 1.5-fold higher than the maximum concentration of 7HMG as a metabolite of MTG. These results provide strong evidence that 7HMG has a negligible role in the antinociceptive effects of MTG in mice. SIGNIFICANCE STATEMENT: Mitragynine (MTG) is being investigated for its potential to aid in pain relief, opioid withdrawal syndrome, and opioid use disorder. The active metabolite of MTG, 7-hydroxymitragynine (7HMG), has been shown to have abuse potential and has been implicated in the opioid-like analgesic effect after MTG administration. The results of this study suggest a lack of involvement of 7HMG in the antinociceptive effects of MTG in mice.


Secologanin Tryptamine Alkaloids , Analgesics, Opioid/pharmacology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Secologanin Tryptamine Alkaloids/pharmacology
6.
J Pharmacol Toxicol Methods ; 111: 107101, 2021.
Article En | MEDLINE | ID: mdl-34242797

INTRODUCTION: Whole-body plethysmography (WBP) in unrestrained, non-anesthetized rodents is a preclinical method to assess the respiratory depressant effects of opioids, the leading cause of opioid overdose death in humans. However, low baseline respiration rates under normocapnic conditions (i.e., "floor" effect) can render the measurement of respiratory decreases challenging. We assessed hypercapnia-induced increases in respiration as a strategy to assess opioid-induced decreases in respiration in rats. METHODS: WBP was used to assess respiration frequency, tidal volume and minute volume in the presence of normocapnic and hypercapnic (8% CO2) conditions in rats during the rat diurnal period of the light cycle. The mu-opioid receptor agonist fentanyl was administered intravenously, and the hot plate test was used to assess acute antinociception. RESULTS AND DISCUSSION: Hypercapnia-induced increases in respiratory parameters (frequency, minute volume, and tidal volume) were decreased by fentanyl at doses that did not decrease the same parameters under the normocapnic conditions. These findings show that hypercapnia increases sensitivity to respiratory depressant effects of fentanyl, as compared with assessments during the rat diurnal period when activity and breathing rate are generally low, i.e., there is a floor effect. The current approach is highly sensitive to opioid-induced respiratory depression, and therefore provides a useful method for assessment in a pre-clinical setting.


Analgesics, Opioid , Respiratory Insufficiency , Analgesics, Opioid/toxicity , Animals , Fentanyl/toxicity , Hypercapnia , Rats , Respiratory Insufficiency/chemically induced , Tidal Volume
7.
J Pharmacol Exp Ther ; 376(3): 410-427, 2021 03.
Article En | MEDLINE | ID: mdl-33384303

Relationships between µ-opioid receptor (MOR) efficacy and effects of mitragynine and 7-hydroxymitragynine are not fully established. We assessed in vitro binding affinity and efficacy and discriminative stimulus effects together with antinociception in rats. The binding affinities of mitragynine and 7-hydroxymitragynine at MOR (Ki values 77.9 and 709 nM, respectively) were higher than their binding affinities at κ-opioid receptor (KOR) or δ-opioid receptor (DOR). [35S]guanosine 5'-O-[γ-thio]triphosphate stimulation at MOR demonstrated that mitragynine was an antagonist, whereas 7-hydroxymitragynine was a partial agonist (Emax = 41.3%). In separate groups of rats discriminating either morphine (3.2 mg/kg) or mitragynine (32 mg/kg), mitragynine produced a maximum of 72.3% morphine-lever responding, and morphine produced a maximum of 65.4% mitragynine-lever responding. Other MOR agonists produced high percentages of drug-lever responding in the morphine and mitragynine discrimination assays: 7-hydroxymitragynine (99.7% and 98.1%, respectively), fentanyl (99.7% and 80.1%, respectively), buprenorphine (99.8% and 79.4%, respectively), and nalbuphine (99.4% and 98.3%, respectively). In the morphine and mitragynine discrimination assays, the KOR agonist U69,593 produced maximums of 72.3% and 22.3%, respectively, and the DOR agonist SNC 80 produced maximums of 34.3% and 23.0%, respectively. 7-Hydroxymitragynine produced antinociception; mitragynine did not. Naltrexone antagonized all of the effects of morphine and 7-hydroxymitragynine; naltrexone antagonized the discriminative stimulus effects of mitragynine but not its rate-decreasing effects. Mitragynine increased the potency of the morphine discrimination yet decreased morphine antinociception. Here we illustrate striking differences in MOR efficacy, with mitragynine having less than 7-hydroxymitragynine. SIGNIFICANCE STATEMENT: At human µ-opioid receptor (MOR) in vitro, mitragynine has low affinity and is an antagonist, whereas 7-hydroxymitragynine has 9-fold higher affinity than mitragynine and is an MOR partial agonist. In rats, intraperitoneal mitragynine exhibits a complex pharmacology including MOR agonism; 7-hydroxymitragynine has higher MOR potency and efficacy than mitragynine. These results are consistent with 7-hydroxymitragynine being a highly selective MOR agonist and with mitragynine having a complex pharmacology that combines low efficacy MOR agonism with activity at nonopioid receptors.


Behavior, Animal/drug effects , Receptors, Opioid, mu/metabolism , Secologanin Tryptamine Alkaloids/metabolism , Secologanin Tryptamine Alkaloids/pharmacology , Analgesics, Opioid/metabolism , Analgesics, Opioid/pharmacology , Animals , CHO Cells , Cricetulus , Discrimination Learning/drug effects , HEK293 Cells , Humans , Protein Binding , Rats
...