Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Gen Virol ; 105(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38441555

RESUMEN

Adeno-associated viruses (AAV) are one of the world's most promising gene therapy vectors and as a result, are one of the most intensively studied viral vectors. Despite a wealth of research into these vectors, the precise characterisation of AAVs to translocate into the host cell nucleus remains unclear. Recently we identified the nuclear localization signals of an AAV porcine strain and determined its mechanism of binding to host importin proteins. To expand our understanding of diverse AAV import mechanisms we sought to determine the mechanism in which the Cap protein from a bat-infecting AAV can interact with transport receptor importins for translocation into the nucleus. Using a high-resolution crystal structure and quantitative assays, we were able to not only determine the exact region and residues of the N-terminal domain of the Cap protein which constitute the functional NLS for binding with the importin alpha two protein, but also reveal the differences in binding affinity across the importin-alpha isoforms. Collectively our results allow for a detailed molecular view of the way AAV Cap proteins interact with host proteins for localization into the cell nucleus.


Asunto(s)
Quirópteros , Dependovirus , Animales , Porcinos , Transporte Activo de Núcleo Celular , Dependovirus/genética , Proteínas de la Cápside/genética , Carioferinas , Señales de Localización Nuclear , alfa Carioferinas/genética
2.
Protein Sci ; 33(2): e4876, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38108201

RESUMEN

Nucleocytoplasmic transport regulates the passage of proteins between the nucleus and cytoplasm. In the best characterized pathway, importin (IMP) α bridges cargoes bearing basic, classical nuclear localization signals (cNLSs) to IMPß1, which mediates transport through the nuclear pore complex. IMPα recognizes three types of cNLSs via two binding sites: the major binding site accommodates monopartite cNLSs, the minor binding site recognizes atypical cNLSs, while bipartite cNLSs simultaneously interact with both major and minor sites. Despite the growing knowledge regarding IMPα-cNLS interactions, our understanding of the evolution of cNLSs is limited. We combined bioinformatic, biochemical, functional, and structural approaches to study this phenomenon, using polyomaviruses (PyVs) large tumor antigens (LTAs) as a model. We characterized functional cNLSs from all human (H)PyV LTAs, located between the LXCXE motif and origin binding domain. Surprisingly, the prototypical SV40 monopartite NLS is not well conserved; HPyV LTA NLSs are extremely heterogenous in terms of structural organization, IMPα isoform binding, and nuclear targeting abilities, thus influencing the nuclear accumulation properties of full-length proteins. While several LTAs possess bipartite cNLSs, merkel cell PyV contains a hybrid bipartite cNLS whose upstream stretch of basic amino acids can function as an atypical cNLS, specifically binding to the IMPα minor site upon deletion of the downstream amino acids after viral integration in the host genome. Therefore, duplication of a monopartite cNLS and subsequent accumulation of point mutations, optimizing interaction with distinct IMPα binding sites, led to the evolution of bipartite and atypical NLSs binding at the minor site.


Asunto(s)
Antígenos de Neoplasias , Señales de Localización Nuclear , alfa Carioferinas , Humanos , Transporte Activo de Núcleo Celular/fisiología , alfa Carioferinas/genética , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Secuencia de Aminoácidos , Antígenos de Neoplasias/metabolismo , Núcleo Celular/metabolismo , Señales de Localización Nuclear/química , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo
3.
Antiviral Res ; 213: 105588, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990397

RESUMEN

Human parvovirus B19 (B19V) is a major human pathogen causing a variety of diseases, characterized by a selective tropism to human progenitor cells in bone marrow. In similar fashion to all Parvoviridae members, the B19V ssDNA genome is replicated within the nucleus of infected cells through a process which involves both cellular and viral proteins. Among the latter, a crucial role is played by non-structural protein (NS)1, a multifunctional protein involved in genome replication and transcription, as well as modulation of host gene expression and function. Despite the localization of NS1 within the host cell nucleus during infection, little is known regarding the mechanism of its nuclear transport pathway. In this study we undertake structural, biophysical, and cellular approaches to characterize this process. Quantitative confocal laser scanning microscopy (CLSM), gel mobility shift, fluorescence polarization and crystallographic analysis identified a short sequence of amino acids (GACHAKKPRIT-182) as the classical nuclear localization signal (cNLS) responsible for nuclear import, mediated in an energy and importin (IMP) α/ß-dependent fashion. Structure-guided mutagenesis of key residue K177 strongly impaired IMPα binding, nuclear import, and viral gene expression in a minigenome system. Further, treatment with ivermectin, an antiparasitic drug interfering with the IMPα/ß dependent nuclear import pathway, inhibited NS1 nuclear accumulation and viral replication in infected UT7/Epo-S1 cells. Thus, NS1 nuclear transport is a potential target of therapeutic intervention against B19V induced disease.


Asunto(s)
Parvovirus B19 Humano , Humanos , Parvovirus B19 Humano/genética , Transporte Activo de Núcleo Celular , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Replicación Viral , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
4.
Viruses ; 15(2)2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36851528

RESUMEN

Adeno-associated viruses (AAV) are important vectors for gene therapy, and accordingly, many aspects of their cell transduction pathway have been well characterized. However, the specific mechanisms that AAV virions use to enter the host nucleus remain largely unresolved. We therefore aimed to reveal the interactions between the AAV Cap protein and the nuclear transport protein importin alpha (IMPα) at an atomic resolution. Herein we expanded upon our earlier research into the Cap nuclear localization signal (NLS) of a porcine AAV isolate, by examining the influence of upstream basic regions (BRs) towards IMPα binding. Using a high-resolution crystal structure, we identified that the IMPα binding determinants of the porcine AAV Cap comprise a bipartite NLS with an N-terminal BR binding at the minor site of IMPα, and the previously identified NLS motif binding at the major site. Quantitative assays showed a vast difference in binding affinity between the previously determined monopartite NLS, and bipartite NLS described in this study. Our results provide a detailed molecular view of the interaction between AAV capsids and the nuclear import receptor, and support the findings that AAV capsids enter the nucleus by binding the nuclear import adapter IMPα using the classical nuclear localization pathway.


Asunto(s)
Señales de Localización Nuclear , alfa Carioferinas , Porcinos , Animales , Dependovirus/genética , Proteínas de la Cápside , Núcleo Celular , Proteínas Nucleares
6.
FEBS Lett ; 595(22): 2793-2804, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34661283

RESUMEN

Adeno-associated viruses (AAVs) are key vectors for gene therapy; thus, many aspects of their cell transduction pathway have been revealed in detail. However, the specific mechanisms AAV virions use to enter the host nucleus remain largely unresolved. We therefore aimed to reveal the structural interactions between the AAV capsid (Cap) protein and the nuclear transport protein importin alpha (IMPα). A putative nuclear localization sequence (NLS) in the virion protein 1 capsid protein of the porcine AAV Po1 was identified. This region was complexed with IMPα and a structure solved at 2.26 Å. This is the first time that an NLS of AAV Cap complexed with IMPα has been determined structurally. Our results support the findings that AAV capsids enter the nucleus through binding the nuclear import adapter IMPα.


Asunto(s)
Proteínas de la Cápside/química , alfa Carioferinas/química , Animales , Sitios de Unión , Proteínas de la Cápside/metabolismo , Dependovirus/química , Ratones , Simulación del Acoplamiento Molecular , Señales de Localización Nuclear , Unión Proteica , alfa Carioferinas/metabolismo
7.
Cells ; 9(8)2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824665

RESUMEN

Nipah and Hendra viruses are highly pathogenic, zoonotic henipaviruses that encode proteins that inhibit the host's innate immune response. The W protein is one of four products encoded from the P gene and binds a number of host proteins to regulate signalling pathways. The W protein is intrinsically disordered, a structural attribute that contributes to its diverse host protein interactions. Here, we review the role of W in innate immune suppression through inhibition of both pattern recognition receptor (PRR) pathways and interferon (IFN)-responsive signalling. PRR stimulation leading to activation of IRF-3 and IFN release is blocked by henipavirus W, and unphosphorylated STAT proteins are sequestered within the nucleus of host cells by W, thereby inhibiting the induction of IFN stimulated genes. We examine the critical role of nuclear transport in multiple functions of W and how specific binding of importin-alpha (Impα) isoforms, and the 14-3-3 group of regulatory proteins suggests further modulation of these processes. Overall, the disordered nature and multiple functions of W warrant further investigation to understand henipavirus pathogenesis and may reveal insights aiding the development of novel therapeutics.


Asunto(s)
Transporte Activo de Núcleo Celular/inmunología , Virus Hendra/metabolismo , Infecciones por Henipavirus/inmunología , Proteínas Intrínsecamente Desordenadas/metabolismo , Virus Nipah/metabolismo , Membrana Nuclear/metabolismo , Transducción de Señal/inmunología , Proteínas Virales/metabolismo , Infecciones por Henipavirus/metabolismo , Infecciones por Henipavirus/virología , Interacciones Microbiota-Huesped/inmunología , Humanos , Inmunidad Innata , Interferones/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Receptores de Reconocimiento de Patrones/metabolismo , Proteínas Virales/química
8.
J Virol ; 94(14)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32321809

RESUMEN

Nipah virus (NiV) and Hendra virus (HeV), members of the Henipavirus genus in the Paramyxoviridae family, are recently emerged, highly lethal zoonotic pathogens. The NiV and HeV nonsegmented, negative-sense RNA genomes encode nine proteins, including the W protein. Expressed from the P gene through mRNA editing, W shares a common N-terminus with P and V but has a unique C-terminus. Expressed alone, W modulates innate immune responses by several mechanisms, and elimination of W from NiV alters the course of infection in experimentally infected ferrets. However, the specific host interactions that allow W to modulate innate immunity are incompletely understood. This study demonstrates that the NiV and HeV W proteins interact with all seven isoforms of the 14-3-3 family, regulatory molecules that preferentially bind phosphorylated target proteins to regulate a wide range of cellular functions. The interaction is dependent on the penultimate amino acid residue in the W sequence, a conserved, phosphorylated serine. The cocrystal structure of the W C-terminal binding motif with 14-3-3 provides only the second structure of a complex containing a mode III interactor, which is defined as a 14-3-3 interaction with a phosphoserine/phosphothreonine at the C-termini of the target protein. Transcriptomic analysis of inducible cell lines infected with an RNA virus and expressing either wild-type W or W lacking 14-3-3 binding, identifies new functions for W. These include the regulation of cellular metabolic processes, extracellular matrix organization, and apoptosis.IMPORTANCE Nipah virus (NiV) and Hendra virus (HeV), members of the Henipavirus genus, are recently emerged, highly lethal zoonotic pathogens that cause yearly outbreaks. NiV and HeV each encode a W protein that has roles in regulating host signaling pathways, including antagonism of the innate immune response. However, the mechanisms used by W to regulate these host responses are not clear. Here, characterization of the interaction of NiV and HeV W with 14-3-3 identifies modulation of 14-3-3-regulated host signaling pathways not previously associated with W, suggesting new avenues of research. The cocrystal structure of the NiV W:14-3-3 complex, as only the second structure of a 14-3-3 mode III interactor, provides further insight into this less-well-understood 14-3-3 binding motif.


Asunto(s)
Proteínas 14-3-3/metabolismo , Regulación de la Expresión Génica , Virus Hendra/metabolismo , Infecciones por Henipavirus/metabolismo , Virus Nipah/metabolismo , Proteínas Virales/metabolismo , Proteínas 14-3-3/genética , Células HEK293 , Virus Hendra/genética , Infecciones por Henipavirus/genética , Humanos , Virus Nipah/genética , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...