Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Nutrients ; 15(3)2023 Feb 01.
Article En | MEDLINE | ID: mdl-36771450

Ramie leaf (Boehmeria nivea L.) has been traditionally used to treat gynecological and bone-related disorders. This study aims to evaluate the effect of Ramie leaf extracts (RLE) against osteoporosis in ovariectomized (OVX) rats. Female SD rats aged seven weeks were randomly assigned into five OVX and a sham-operated (sham) group. OVX subgroups include OVX, vehicle-treated OVX group; E2, OVX with 100 µg/kg 17ß-estradiol; and RLE 0.25, 0.5, and 1, OVX rats treated with 0.25, 0.5, and 1 g/kg/day RLE, respectively. Two weeks into the bilateral ovariectomy, all the rats were orally administered with or without RLE daily for 12 weeks. OVX rats administered with RLE showed higher bone density, relatively low tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and lower reactive oxygen species (ROS) within bone tissues compared to vehicle-treated OVX rats. Furthermore, supplementation of RLE improved bone mineral density (BMD) and bone microstructure in the total femur. RLE prevented RANKL-induced osteoclast differentiation and expression of osteoclastogenesis-related genes such as Cal-R, MMP-9, cathepsin K, and TRAP in RANKL-induced RAW264.7 cells. Moreover, RLE administration lowered the intracellular ROS levels by reducing NADPH oxidase 1 (NOX-1) and 4-hydroxynonenal (4HNE). These results suggest that RLE alleviates bone mass loss in the OVX rats by inhibiting osteoclastogenesis, where reduced ROS and its associated signalings were involved.


Boehmeria , Osteoporosis , Plant Extracts , Animals , Female , Rats , Bone Density , Osteoclasts , Osteoporosis/prevention & control , Ovariectomy , Plant Extracts/pharmacology , Rats, Sprague-Dawley , Reactive Oxygen Species/pharmacology
2.
Heliyon ; 8(9): e10737, 2022 Sep.
Article En | MEDLINE | ID: mdl-36193527

Hepatic alcohol clearance is a key factor to overcome alcohol hangovers, and over the period, alcohol hangovers may lead to inflammation and oxidative stress. Natural food products with high antioxidant and anti-inflammatory effects might contribute to hepatic alcohol clearance, a hypothesis in this study. The present study aimed to evaluate the influence of turmeric (Curcuma longa L., Zingiberaceae) is an herbal product having antioxidant and anti-inflammatory activities, on alcohol metabolism using binge alcohol drinking rat model. In vivo investigations revealed that pretreatment with turmeric extract enhanced alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities upon binge ethanol (3 g/kg). Additionally, pretreatment with turmeric extract regulated CYP2E1 activity and levels of reactive oxygen species (ROS), Bax, Bcl-2, and inflammatory mediators like IL-1ß, IL-6, and TNF-α. Moreover, turmeric extract upregulated superoxide dismutase, catalase, and glutathione peroxidase activities in liver tissues. Together, these observations shed light on the potential beneficial effects of turmeric extract against acute liver toxicity. The results offer an alternative natural functional food product, turmeric extract, to prevent the negative implications of binge drinking.

3.
Comput Biol Med ; 149: 105996, 2022 10.
Article En | MEDLINE | ID: mdl-36049413

BACKGROUND: Recently, Inflammatory Bowel Disease (IBD) has been proven as a risk factor for the increasing incidence of cervical cancer (CC) development. In this study, we identify these potential hub genes and their significant pathways that commonly interact between IBD and CC and these pathological mechanisms. To this end, we use bioinformatics and systems biology approaches to analyze the miRNA-mRNA, TFs-mRNA regulatory network. METHODS AND FINDINGS: The reanalysis dataset from Gene Expression Omnibus (GEO) and the cancer genome atlas (TCGA) found these common differentially expressed genes (DEGs) between IBD and CC, clustered via weighted gene co-expression network analysis, and the vital modules significantly related to cervical cancer were identified. These hub genes of the key module were identified and explored in biological mechanism pathway analysis. Organelle fission, nuclear envelope, protein serine/threonine kinase activity, and the Human T-cell leukemia virus 1 infection pathway were the major enriched pathways for the common DEGs. Due to the high connectivity, the common DEGs with protein-protein interaction (PPI) network disclosed hub proteins (CDK1, MAD2L1, and CCNB1). This study also showed the classification algorithms of ten hub genes (MAD2L1, CCNB2, CDK1, CCNA2, BUB1B, KIF11, TTK, BUB1, CCNB1, ASPM) with accuracy >0.90 suggesting the novel biomarker potential of the hub genes. The microRNAs (miRNA), and transcription factors (TFs) mRNA regulatory network, five transcription factors, and twelve miRNAs are strongly linked to three hub genes. Gene drug interaction analysis found seven drugs compound that interacts with the hub gene. CONCLUSIONS: In the current study, our procedure has hypothesized the comprehensive understanding of disease mechanisms vital for both CC and IBD that may mediate their interaction. Our results suggest the further investigation of the molecules for the treatment of IBD and CC.


Inflammatory Bowel Diseases , MicroRNAs , Uterine Cervical Neoplasms , Computational Biology/methods , Databases, Genetic , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Humans , Inflammatory Bowel Diseases/genetics , Machine Learning , MicroRNAs/genetics , Nerve Tissue Proteins , Protein Serine-Threonine Kinases , RNA, Messenger/genetics , Serine/genetics , Transcription Factors/genetics , Uterine Cervical Neoplasms/genetics
4.
Bioeng Transl Med ; 7(3): e10317, 2022 Sep.
Article En | MEDLINE | ID: mdl-36176607

The goal of this study was to fabricate bioactive cell-laden biocomposites supplemented with bone-derived decellularized extracellular matrix (dECM) with calcium phosphate ceramic, and to assess the effect of the biocomponents on the osteogenic and odontogenic differentiation of human dental pulp stem cells (hDPSCs). By evaluating the rheological properties and selecting printing parameters, mechanically stable cell-laden 3D biocomposites with high initial cell-viability (>90%) and reasonable printability (≈0.9) were manufactured. The cytotoxicity of the biocomposites was evaluated via MTT assay and nuclei/F-actin fluorescent analyses, while the osteo/odontogenic differentiation of the hDPSCs was assessed using histological and immunofluorescent analyses and various gene expressions. Alkaline phosphate activity and alizarin red staining results indicate that the dECM-based biocomposites exhibit significantly higher osteogenic activities, including calcification, compared to the collagen-based biocomposites. Furthermore, immunofluorescence images and gene expressions demonstrated upregulation of dentin matrix acidic phosphoprotein-1 and dentin sialophosphoprotein in the dECM-based biocomposites, indicating acceleration of the odontogenic differentiation of hDPSCs in the printed biocomposites. The hDPSC-laden biocomposite was implanted into the subcutaneous region of mice, and the biocomposite afforded clear induction of osteo/odontogenic ectopic hard tissue formation 8 weeks post-transplantation. From these results, we suggest that the hDPSC-laden biocomposite is a promising biomaterial for dental tissue engineering.

5.
Nutrients ; 14(8)2022 Apr 18.
Article En | MEDLINE | ID: mdl-35458241

Gamma-aminobutyric acid (GABA) is a natural amino acid with antioxidant activity and is often considered to have therapeutic potential against obesity. Obesity has long been linked to ROS and ER stress, but the effect of GABA on the ROS-associated ER stress axis has not been thoroughly explored. Thus, in this study, the effect of GABA and fermented Curcuma longa L. extract enriched with GABA (FCLL-GABA) on the ROS-related ER stress axis and inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) sulfonation were examined with the HFD model to determine the underlying anti-obesity mechanism. Here, GABA and FCLL-GABA supplementations significantly inhibited the weight gain in HFD fed mice. The GABA and FCLL-GABA supplementation lowered the expressions of adipogenic transcription factors such as PPAR-γ, C/EBPα, FAS, and SREBP-1c in white adipose tissue (WAT) and liver from HFD-fed mice. The enhanced hyper-nutrient dysmetabolism-based NADPH oxidase (Nox) 4 and the resultant IRE1α sulfonation-RIDD-SIRT1 decay under HFD conditions were controlled with GABA and FCLL-GABA. Notably, GABA and FCLL-GABA administration significantly increased AMPK and sirtuin 1 (SIRT1) levels in WAT of HFD-fed mice. These significant observations indicate that ER-localized Nox4-induced IRE1α sulfonation results in the decay of SIRT1 as a novel mechanism behind the positive implications of GABA on obesity. Moreover, the investigation lays a firm foundation for the development of FCLL-GABA as a functional ingredient.


Diet, High-Fat , Sirtuin 1 , Animals , Curcuma , Diet, High-Fat/adverse effects , Endoribonucleases/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , NADPH Oxidase 4 , Obesity/drug therapy , Obesity/etiology , Obesity/metabolism , Plant Extracts/chemistry , Protein Serine-Threonine Kinases , Reactive Oxygen Species , Sirtuin 1/metabolism , gamma-Aminobutyric Acid/therapeutic use
6.
Antioxid Redox Signal ; 37(4-6): 229-245, 2022 08.
Article En | MEDLINE | ID: mdl-35166127

Aims: The skeletal muscle maintains glucose disposal via insulin signaling and glucose transport. The progression of diabetes and insulin resistance is critically influenced by endoplasmic reticulum (ER) stress. d-Allulose, a low-calorie sugar substitute, has shown crucial physiological activities under conditions involving hyperglycemia and insulin resistance. However, the molecular mechanisms of d-allulose in the progression of diabetes have not been fully elucidated. Here, we evaluated the effect of d-allulose on hyperglycemia-associated ER stress responses in human skeletal myoblasts (HSkM) and db/db diabetic and high-fat diet-fed mice. Results: d-allulose effectively controlled glycemic markers such as insulin and hemoglobin A1c (HbA1c), showing anti-diabetic effects by inhibiting the disruption of insulin receptor substrate (IRS)-1 tyrosine phosphorylation and glucose transporter 4 (GLUT4) expression, in which the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt) pathway is involved. The levels of glucose dysmetabolism-based NADPH oxidase, such as NADPH-dependent oxidoreductase (Nox) 4, were highly increased, and their interaction with IRE1α and the resultant sulfonation-regulated IRE1-dependent decay (RIDD)-Sirt1 decay were also highly increased under diabetic conditions, which were controlled with d-allulose treatment. Skeletal muscle cells grown with a high glucose medium supplemented with d-allulose showed controlled IRE1α sulfonation-RIDD-Sirt1 decay, in which Nox4 was involved. Innovation and Conclusion: The study observations indicate that d-allulose contributes to the muscular glucose disposal in the diabetic state where ER-localized Nox4-induced IRE1α sulfonation results in the decay of Sirt1, a core factor for controlling glucose metabolism. Antioxid. Redox Signal. 37, 229-245.


Diabetes Mellitus , Endoribonucleases , Hyperglycemia , Insulin Resistance , Protein Serine-Threonine Kinases , Sirtuin 1 , Animals , Diabetes Mellitus/metabolism , Endoribonucleases/metabolism , Fructose , Glucose/metabolism , Humans , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Insulin/metabolism , Mice , Muscle, Skeletal/metabolism , Protein Serine-Threonine Kinases/metabolism , Sirtuin 1/metabolism
7.
Nutrients ; 14(1)2022 Jan 04.
Article En | MEDLINE | ID: mdl-35011092

Obesity is a global health issue linked to the heightened risk of several chronic diseases. Rhus verniciflua (RV) is a traditional food supplement used for a range of pharmacological effects such as antitumor, antioxidant, α-glucosidase inhibitory effects, hepatitis, and arthritis. Despite the traditional medicinal values, scientific evidence for its application in obesity is inadequate and unclear. Thus, this investigation was designed to evaluate the anti-obesity effects of IBF-R, an RV extract, using a high-fat diet (HFD) model. The study has six groups: chow diet group; chow diet with 80 mg/kg IBF-R; HFD group; IBF-R group with 20, 40, and 80 mg/kg. IBF-R supplementation significantly regulated the weight gain than the HFD fed mice. Further, IBF-R supplementation lowered the expressions of adipogenic transcription factors such as SREBP-1c, C/EBPα, FAS, and PPAR-γ in white adipose tissue (WAT) of diet-induced obese mice. In addition, IBF-R supplementation reduced the lipogenic gene expression while enhancing genes was related to fatty acid oxidation. Obesity is linked to redox-based post-translational modifications (PTMs) of IRE1α such as S-nitrosylation, endoplasmic reticulum (ER) stress, and chronic metabolic inflammation. The administration of IBF-R inhibits these PTMs. Notably, IBF-R administration significantly enhanced the expression of AMPK and sirtuin 1 in WAT of HFD-fed mice. Together, these findings reveal the IRE1α S-nitrosylation-inflammation axis as a novel mechanism behind the positive implications of IBF-R on obesity. In addition, it lays a firm foundation for the development of Rhus verniciflua extract as a functional ingredient in the food and pharmaceutical industries.


Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Obesity/metabolism , Plant Extracts/administration & dosage , Protein Processing, Post-Translational/drug effects , Protein Serine-Threonine Kinases/metabolism , Rhus/chemistry , Adipogenesis/drug effects , Animals , Anti-Obesity Agents , Diet, High-Fat , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/etiology , Weight Gain/drug effects
8.
PLoS One ; 16(4): e0250354, 2021.
Article En | MEDLINE | ID: mdl-33872333

Constipation is a common condition that affects individuals of all ages, and prolonged constipation needs to be prevented to avoid potential complications and reduce the additional stress on individuals with pre-medical conditions. This study aimed to evaluate the effects of heat-inactivated Lactobacillus plantarum (HLp-nF1) on loperamide-induced constipation in rats. Constipation-induced male rats were treated orally with low to high doses of HLp-nF1 and an anti-constipation medication Dulcolax for five weeks. Study has 8 groups, control group; loperamide-treated group; Dulcolax-treated group; treatment with 3.2 × 1010, 8 × 1010 and 1.6 × 1011, cells/mL HLp-nF1; Loperamide + Dulcolax treated group. HLp-nF1 treated rats showed improvements in fecal pellet number, weight, water content, intestinal transit length, and contractility compared to the constipation-induced rats. Also, an increase in the intestine mucosal layer thickness and the number of mucin-producing crypt epithelial cells were observed in HLp-nF1-treated groups. Further, the levels of inflammatory cytokines levels were significantly downregulated by treatment with HLp-nF1 and Dulcolax. Notably, the metagenomics sequencing analysis demonstrated a similar genus pattern to the pre-preparation group and control with HLp-nF1 treatment. In conclusion, the administration of >3.2 × 1010 cells/mL HLp-nF1 has a positive impact on the constipated rats overall health.


Constipation/therapy , Gastrointestinal Transit/drug effects , Intestinal Mucosa/drug effects , Lactobacillus plantarum/physiology , Laxatives/pharmacology , Metagenome , Actinobacteria/genetics , Actinobacteria/growth & development , Actinobacteria/isolation & purification , Animals , Bacteroidetes/genetics , Bacteroidetes/growth & development , Bacteroidetes/isolation & purification , Bisacodyl/pharmacology , Constipation/chemically induced , Constipation/microbiology , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Feces/microbiology , Firmicutes/genetics , Firmicutes/growth & development , Firmicutes/isolation & purification , Gastrointestinal Transit/physiology , Gene Expression/drug effects , Hot Temperature , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Intestinal Mucosa/microbiology , Loperamide/adverse effects , Male , Microbial Viability , Proteobacteria/genetics , Proteobacteria/growth & development , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Rats , Rats, Sprague-Dawley , Treatment Outcome , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Verrucomicrobia/genetics , Verrucomicrobia/growth & development , Verrucomicrobia/isolation & purification
10.
Food Nutr Res ; 652021.
Article En | MEDLINE | ID: mdl-35221861

BACKGROUND: Adiposity is a major health-risk factor, and D-allulose has beneficial effects on adiposity-related metabolic disturbances. However, the modes of action underlying anti-hyperglycemic and hypolipidemic activity are partly understood. OBJECTIVE: This study investigated the in vivo and in vitro effects of D-allulose involved in adipogenesis and activation of the AMPK/SIRT1/PGC-1α pathway in high-fat diet (HFD)-fed rats. DESIGN: In this study, 8-week-old male SD (Sprague Dawley) rats were divided into five groups (n = 8/group), (1) Control (chow diet, 3.5%); (2) 60% HFD; (3) 60% HFD supplemented with allulose powder (AP) at 0.4 g/kg; (4) 60% HFD supplemented with allulose liquid (AL) at 0.4 g/kg; (5) 60% HFD supplemented with glucose (AL) at 0.4 g/kg. All the group received the product through oral gavage for 6 weeks. Control and HFD groups were gavaged with double-distilled water. RESULTS: Rats receiving AP and AL showed reduced body weight gain and fat accumulation in HFD-fed rats. Also, supplementation of AL/AP regulated the cytokine secretion and recovered biochemical parameters to alleviate metabolic dysfunction and hepatic injury. Additionally, AL/AP administration improved adipocyte differentiation via regulation of the PPARγ and C/EBPα signaling pathway and adipogenesis-related genes owing to the combined effect of the AMPK/SIRT1 pathway. Furthermore, AL/AP treatment mediated PGC-1α expression triggering mitochondrial genesis via activating the AMPK phosphorylation and SIRT1 deacetylation activity in adipose tissue. CONCLUSION: The anti-adiposity activity of D-allulose is observed on a marked alleviation in adipogenesis and AMPK/SIRT1/PGC-1α deacetylation in the adipose tissue of HFD-fed rat.

11.
Aging Cell ; 19(12): e13279, 2020 12.
Article En | MEDLINE | ID: mdl-33274583

Endothelial dysfunction is one of the main age-related arterial phenotypes responsible for cardiovascular disease (CVD) in older adults. This endothelial dysfunction results from decreased bioavailability of nitric oxide (NO) arising downstream of endothelial oxidative stress. In this study, we investigated the protective effect of anthocyanins and the underlying mechanism in rat thoracic aorta and human vascular endothelial cells in aging models. In vitro, cyanidin-3-rutinoside (C-3-R) and cyanidin-3-glucoside (C-3-G) inhibited the d-galactose (d-gal)-induced senescence in human endothelial cells, as indicated by reduced senescence-associated-ß-galactosidase activity, p21, and p16INK4a . Anthocyanins blocked d-gal-induced reactive oxygen species (ROS) formation and NADPH oxidase activity. Anthocyanins reversed d-gal-mediated inhibition of endothelial nitric oxide synthase (eNOS) serine phosphorylation and SIRT1 expression, recovering NO level in endothelial cells. Also, SIRT1-mediated eNOS deacetylation was shown to be involved in anthocyanin-enhanced eNOS activity. In vivo, anthocyanin-rich mulberry extract was administered to aging rats for 8 weeks. In vivo, mulberry extract alleviated endothelial senescence and oxidative stress in the aorta of aging rats. Consistently, mulberry extract also raised serum NO levels, increased phosphorylation of eNOS, increased SIRT1 expression, and reduced nitrotyrosine in aortas. The eNOS acetylation was higher in the aging group and was restored by mulberry extract treatment. Similarly, SIRT1 level associated with eNOS decreased in the aging group and was restored in aging plus mulberry group. These findings indicate that anthocyanins protect against endothelial senescence through enhanced NO bioavailability by regulating ROS formation and reducing eNOS uncoupling.


Aging/physiology , Anthocyanins/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Nitric Oxide Synthase Type III/metabolism , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiopathology , Cellular Senescence/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Male , Morus/chemistry , Nitric Oxide/biosynthesis , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley , Sirtuin 1/metabolism , Uncoupling Agents/pharmacology
12.
Redox Biol ; 37: 101727, 2020 10.
Article En | MEDLINE | ID: mdl-33010578

Oxidative stress attributable to the activation of a Nox4-containing NADPH oxidase is involved in aging-associated vascular dysfunction. However, the Nox4-induced signaling mechanism for the vascular alteration in aging remains unclear. In an aged aorta, the expression of Nox4 mRNA and protein by Nox family of genes was markedly increased compared with a young aorta. Nox4 localization mainly to ER was also established. In the aorta of Nox4 WT mice aged 23-24 months (aged), reactive oxygen species (ROS) and endoplasmic reticulum (ER)/oxidative stress were markedly increased compared with the counter KO mice. Furthermore, endothelial functions including eNOS coupling process and acetylcholine-induced vasodilation were significantly disturbed in the aged WT, slightly affected in the counter KO aorta. Consistently, in d-galactose-induced in vitro aging condition, ER-ROS and its associated ER Nox4 expression and activity were highly increased. Also, in chronic d-galactose-treated condition, IRE1α phosphorylation and XBP-1 splicing and were transiently increased, but IRE1α sulfonation was robustly increased in the aging Nox4 WT condition when compared to the counter KO condition. In vitro D-gal-induced aging study, the phenomenon were abrogated with Nox4 knock-down condition and was significantly decreased in GKT, Nox4 inhibitor and 4-PBA, ER chemical chaperone-treated human umbilical vein endothelial cells. The state of Nox4-based ER redox imbalance/ROS accumulation is suggested to determine the pathway "the UPR; IRE1α phosphorylation and XBP-1 splicing and the UPR failure; IRE1α cysteine-based oxidation, especially sulfonation, finally controlling aging-associated vascular dysfunction.


Endoribonucleases , NADPH Oxidase 4 , Protein Serine-Threonine Kinases , Aging , Animals , Endoribonucleases/genetics , Mice , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Oxidation-Reduction , Oxidative Stress , Protein Serine-Threonine Kinases/genetics , Reactive Oxygen Species
13.
Nutrients ; 12(3)2020 Mar 01.
Article En | MEDLINE | ID: mdl-32121602

Non-alcoholic fatty liver disease (NAFLD) is prevalent in the elderly population, and has symptoms ranging from liver steatosis to advanced fibrosis. Citrus peel extracts (CPEs) contain compounds that potentially improve dyslipidemia; however, the mechanism of action and effects on hepatic steatosis regulation remains unclear. Current study was aimed to investigate the protective effect of CPEs extracted through hot-air drying (CPEW) and freeze-drying (CPEF) and the underlying mechanism in a rat model of high-fat diet-induced NAFLD. The high-fat diet (HFD)-fed rats showed significant increase in total cholesterol, alanine aminotransferase (ALT), triglycerides, aspartate aminotransferase (AST), and lipid peroxidation compared to the normal chow-diet (NCD) group rats; but CPEW and CPEF limited this effect. CPEW and CPEF supplementation reduced both hepatocyte steatosis and fat accumulation involving the regulatory effect of mTORC1. Collectively, CPEW and CPEF protected deterioration of liver steatosis with AMPK activation and regulating ROS accumulation associated with interstitial disorders, which are also associated with endoplasmic reticulum (ER) redox. Thus, the application of CPEW and CPEF may lead to the development of novel therapeutic or preventive agents against NAFLD.


AMP-Activated Protein Kinases/metabolism , Citrus/chemistry , Liver/drug effects , Non-alcoholic Fatty Liver Disease/prevention & control , Plant Extracts/administration & dosage , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Freeze Drying , Humans , Lipid Metabolism/drug effects , Liver/metabolism , Liver/pathology , Male , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Oxidation-Reduction/drug effects , Plant Extracts/isolation & purification , Rats , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
14.
Food Sci Nutr ; 8(1): 402-409, 2020 Jan.
Article En | MEDLINE | ID: mdl-31993166

This study was carried out to elucidate the antidiabetic effects of Gryllus bimaculatus powder using a streptozotocin (STZ)-induced rat model of type I diabetes. Administration of the insect powder significantly rescued representative diabetes markers (i.e., insulin and C-peptide) in STZ-treated rats. Improved glucose tolerance test (GTT) and insulin tolerance test (ITT) results were also observed, indicating that Gryllus bimaculatus powder exerts antidiabetic effects. Gryllus bimaculatus powder administration rescued STZ-induced alterations in both islet morphology and insulin staining patterns. The extract increased antiapoptotic Bcl2 expression and decreased proapoptotic Bax and active caspase 3 expressions. In addition, the Gryllus bimaculatus powder supplementation enhanced AKT/mTOR pathway, a key marker of the state of anabolic metabolism, and its downstream effector, mTOR. Collectively, our results suggest that Gryllus bimaculatus contributes to the maintenance of pancreatic ß-cell function and morphology against a diabetic state through the regulations against apoptosis and anabolic metabolism.

15.
Nutrients ; 11(5)2019 Apr 28.
Article En | MEDLINE | ID: mdl-31035424

Dyslipidemia is associated with endothelial dysfunction, which is linked to nitric oxide (NO) biology. The coupling of endothelial NO synthase with cofactors is a major step for NO release. This study is aimed to investigate the vascular pharmacology effects of mulberry in rat thoracic aorta and human vascular endothelial cells. In vitro, we investigated the protective effects of the mulberry extract and its main component cyanidin-3-rutinoside (C-3-R), against oxidized low-density lipoprotein (ox-LDL)-induced endothelial nitric oxide synthase (eNOS) uncoupling. Whereas ox-LDL significantly decreased NO levels in endothelial cells, mulberry extract, and C-3-R significantly recovered NO levels and phospho-eNOS Thr495 and Ser1177 expression. In vivo, mulberry was administered to 60% of high-fat diet (w/w)-fed Sprague Dawley (SD) rats for six weeks, in which endothelium-dependent relaxations were significantly improved in organ bath studies and isometric tension recordings. Consistently, aortic expressions of phospho-eNOS and nitrotyrosine were increased. Mulberry also raised serum NO levels, increased phosphorylation of eNOS, and reduced nitrotyrosine and intracellular reactive oxygen species (ROS) in aortas, showing that mulberry preserves endothelium-dependent relaxation in aortas from high-fat diet rats. We suggest that this effect is mediated through enhanced NO bioavailability, in which the regulation of ROS and its reduced eNOS uncoupling are involved.


Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Gene Expression Regulation, Enzymologic/drug effects , Morus/chemistry , Nitric Oxide Synthase Type III/metabolism , Plant Extracts/pharmacology , Animals , Anthocyanins/chemistry , Anthocyanins/pharmacology , Diet, High-Fat , Lipid Peroxidation , Male , Molecular Structure , Nitric Oxide Synthase Type III/genetics , Oxidative Stress , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley
...