Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Conserv Physiol ; 12(1): coae004, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343722

RESUMEN

Upper thermal limits in many fish species are limited, in part, by the heart's ability to meet increased oxygen demand during high temperatures. Cardiac plasticity induced by developmental temperatures can therefore influence thermal tolerance. Here, we determined how incubation temperatures during the embryonic stage influence cardiac performance across temperatures during the sensitive larval stage of the imperiled longfin smelt. We transposed a cardiac assay for larger fish to newly hatched larvae that were incubated at 9°C, 12°C or 15°C. We measured heart rate over increases in temperature to identify the Arrhenius breakpoint temperature (TAB), a proxy for thermal optimum and two upper thermal limit metrics: temperature when heart rate is maximized (Tpeak) and when cardiac arrhythmia occurs (TArr). Higher incubation temperatures increased TAB, Tpeak and TArr, but high individual variation in all three metrics resulted in great overlap of individuals at TAB, Tpeak and TArr across temperatures. We found that the temperatures at which 10% of individuals reached Tpeak or TArr and temperatures at which number of individuals at TAB relative to Tpeak (ΔN(TAB,Tpeak)) was maximal, correlated more closely with upper thermal limits and thermal optima inferred from previous studies, compared to the mean values of the three cardiac metrics of the present study. Higher incubation temperatures increased the 10% Tpeak and TArr thresholds but maximum ΔN(TAB,Tpeak) largely remained the same, suggesting that incubation temperatures modulate upper thermal limits but not Topt for a group of larvae. Overall, by measuring cardiac performance across temperatures, we defined upper thermal limits (10% thresholds; Tpeak, 14.4-17.5°C; TArr, 16.9-20.2°C) and optima (ΔN(TAB,Tpeak), 12.4-14.4°C) that can guide conservation strategies for longfin smelt and demonstrated the potential of this cardiac assay for informing conservation plans for the early life stages of fish.

2.
Sci Rep ; 12(1): 20751, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456583

RESUMEN

Developmental abnormalities in otoliths can impact growth and survival in teleost fishes. Here, we quantified the frequency and severity of developmental anomalies in otoliths of delta smelt (Hypomesus transpacificus), a critically endangered estuarine fish that is endemic to the San Francisco Estuary. Left-right asymmetry and anomalous crystalline polymorphs (i.e., vaterite) were quantified and compared between wild and cultured populations using digital image analysis. Visual estimates of vaterite were validated using X-ray diffraction, Raman spectroscopy, laser ablation ICPMS, and electron probe microanalysis. Results indicated that cultured delta smelt were 80 times more likely to contain a vateritic otolith and 18 times more likely to contain relatively large (≥ 15%) amounts of vaterite. Similarly, cultured fish exhibited 30% greater asymmetry than wild fish. These results indicate that cultured delta smelt exhibit a significantly higher frequency of vestibular abnormalities which are known to reduce fitness and survival. Such hatchery effects on otolith development could have important implications for captive culture practices and the supplementation of wild fish populations with cultured individuals.


Asunto(s)
Osmeriformes , Membrana Otolítica , Animales , Carbonato de Calcio , Microanálisis por Sonda Electrónica , Estuarios
3.
Conserv Physiol ; 10(1): coac041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795015

RESUMEN

Longfin smelt (Spirinchus thaleichthys) is a threatened anadromous fish species that spawns in freshwater to moderately brackish (i.e. 5-10 ppt) reaches of the upper San Francisco Estuary and has declined to ~1% of its pre-1980s abundances. Despite 50+ years of population monitoring, the efficacy of 10+ years of conservation efforts for longfin smelt remain uncertain due to a limited understanding of how the species responds to environmental variation, such as salinity. For example, high mortality during larval stages has prevented culture efforts from closing the life cycle in captivity. Here, we investigated the effects of salinity on longfin smelt yolk-sac larvae. Newly hatched larvae from four single-pair crosses were acutely transferred to and reared at salinities of 0.4, 5, 10, 20 or 32 ppt. We compared whole-body water and sodium ion (Na+) content, notochord length and yolk-sac volume at 12, 24, 48, 72, and 96 hours post-transfer for each salinity treatment. We found that larvae maintained osmotic and ionic balance at 0.4-10 ppt, whereas salinities ˃10 ppt resulted in decreased water and increased whole-body Na+ content. We also found that larvae grew largest and survived the longest when reared at 5 and 10 ppt, respectively, and that yolk resorption stalled at 0.4 ppt. Finally, there were significant but small interclutch variations in responses to different salinities, with clutch accounting for <8% of the variance in our statistical models. Overall, our results indicate that longfin smelt yolk-sac larvae likely perform best at moderately brackish conditions, thus yielding a mechanism that explains their distribution in field surveys and providing key information for future conservation efforts.

4.
Glob Chang Biol ; 28(17): 5104-5120, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35583053

RESUMEN

Investigating the effects of climatic variability on biological diversity, productivity, and stability is key to understanding possible futures for ecosystems under accelerating climate change. A critical question for estuarine ecosystems is, how does climatic variability influence juvenile recruitment of different fish species and life histories that use estuaries as nurseries? Here we examined spatiotemporal abundance trends and environmental responses of 18 fish species that frequently spend the juvenile stage rearing in the San Francisco Estuary, CA, USA. First, we constructed multivariate autoregressive state-space models using age-0 fish abundance, freshwater flow (flow), and sea surface temperature data (SST) collected over four decades. Next, we calculated coefficients of variation (CV) to assess portfolio effects (1) within and among species, life histories (anadromous, marine opportunist, or estuarine dependent), and the whole community; and (2) within and among regions of the estuary. We found that species abundances varied over space and time (increasing, decreasing, or dynamically stable); and in 83% of cases, in response to environmental conditions (wet/dry, cool/warm periods). Anadromous species responded strongly to flow in the upper estuary, marine opportunist species responded to flow and/or SST in the lower estuary, and estuarine dependent species had diverse responses across the estuary. Overall, the whole community when considered across the entire estuary had the lowest CV, and life histories and species provided strong biological insurance to the portfolio (2.4- to 3.5-fold increases in stability, respectively). Spatial insurance also increased stability, although to a lesser extent (up to 1.6-fold increases). Our study advances the notion that fish recruitment stability in estuaries is controlled by biocomplexity-life history diversity and spatiotemporal variation in the environment. However, intensified drought and marine heatwaves may increase the risk of multiple consecutive recruitment failures by synchronizing species dynamics and trajectories via Moran effects, potentially diminishing estuarine nursery function.


Asunto(s)
Ecosistema , Agua Dulce , Animales , Cambio Climático , Estuarios , Peces/fisiología
5.
G3 (Bethesda) ; 12(8)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35640553

RESUMEN

Migration is a complex phenotypic trait with some species containing migratory and nonmigratory individuals. Such life history variation may be attributed in part to plasticity, epigenetics, or genetics. Although considered semianadromous, recent studies using otolith geochemistry have revealed life history variation within the critically endangered Delta Smelt. Broadly categorizable as migratory or freshwater residents, we examined Restriction site Associated DNA sequencing data to test for a relationship between genetic variation and migratory behaviors. As previously shown, we found no evidence for neutral population genetic structure within Delta Smelt; however, we found significant evidence for associations between genetic variants and life history phenotypes. Furthermore, discriminant analysis of principal components, hierarchical clustering, and machine learning resulted in accurate assignment of fish into the freshwater resident or migratory classes based on their genotypes. These results suggest the presence of adaptive genetic variants relating to life history variation within a panmictic population. Mechanisms that may lead to this observation are genotype dependent habitat choice and spatially variable selection, both of which could operate each generation and are not exclusive. Given that the population of cultured Delta Smelt are being used as a refugial population for conservation, as a supply for wild population supplementation, and currently represent the majority of all living individuals of this species, we recommend that the hatchery management strategy consider the frequencies of life history-associated alleles and how to maintain this important aspect of Delta Smelt biological variation while under captive propagation.


Asunto(s)
Especies en Peligro de Extinción , Osmeriformes , Animales , Agua Dulce , Osmeriformes/genética , Fenotipo , Análisis de Secuencia de ADN
6.
PeerJ ; 9: e12280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34820160

RESUMEN

BACKGROUND: The application of otolith-based tools to inform the management and conservation of fishes first requires taxon- and stage-specific validation. The Delta Smelt (Hypomesus transpacificus), a critically endangered estuarine fish that is endemic to the upper San Francisco Estuary (SFE), California, United States, serves as a key indicator species in the SFE; thus, understanding this species' vital rates and population dynamics is valuable for assessing the overall health of the estuary. Otolith-based tools have been developed and applied across multiple life stages of Delta Smelt to reconstruct age structure, growth, phenology, and migration. However, key methodological assumptions have yet to be validated, thus limiting confidence in otolith-derived metrics that are important for informing major water management decisions in the SFE. METHODS: Using known-age cultured Delta Smelt and multiple independent otolith analysts, we examined otolith formation, otolith-somatic proportionality, aging accuracy and precision, left-right symmetry, and the effects of image magnification for larval, juvenile, and adult Delta Smelt. RESULTS: Overall, otolith size varied linearly with fish size (from 10-60 mm), explaining 99% of the variation in fish length, despite a unique slope for larvae < 10 mm. Otolith-somatic proportionality was similar among wild and cultured specimens. Aging precision among independent analysts was 98% and aging accuracy relative to known ages was 96%, with age estimates exhibiting negligible differences among left and right otoliths. Though error generally increased with age, percent error decreased from 0-30 days-post-hatch, with precision remaining relatively high (≥ 95%) thereafter. Increased magnification (400×) further improved aging accuracy for the oldest, slowest-growing individuals. Together, these results indicate that otolith-based techniques provide reliable age and growth reconstructions for larval, juvenile, and adult Delta Smelt. Such experimental assessments across multiple developmental stages are key steps toward assessing confidence in otolith-derived metrics that are often used to assess the dynamics of wild fish populations.

8.
Sci Rep ; 9(1): 16772, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727901

RESUMEN

Effective conservation of endangered species requires knowledge of the full range of life-history strategies used to maximize population resilience within a stochastic and ever-changing environment. California's endemic Delta Smelt (Hypomesus transpacificus) is rapidly approaching extinction in the San Francisco Estuary, placing it in the crossfire between human and environmental uses of limited freshwater resources. Though managed as a semi-anadromous species, recent studies have challenged this lifecycle model for Delta Smelt, suggesting the species is an estuarine resident with several localized "hot-spots" of abundance. Using laser-ablation otolith strontium isotope microchemistry, we discovered three distinct life-history phenotypes including freshwater resident (FWR), brackish-water resident (BWR), and semi-anadromous (SA) fish. We further refined life-history phenotypes using an unsupervised algorithm and hierarchical clustering and found that in the last resilient year-class, the FWR (12%) and BWR (7%) comprised a small portion of the population, while the majority of fish were SA (81%). Furthermore, the semi-anadromous fish could be clustered into at least four additional life-history phenotypes that varied by natal origin, dispersal age and adult salinity history. These diverse life-history strategies should be incorporated into future conservation and management efforts aimed at preventing the extinction of Delta Smelt in the wild.


Asunto(s)
Osmeriformes/clasificación , Osmeriformes/crecimiento & desarrollo , Membrana Otolítica/química , Estroncio/química , Animales , California , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Estuarios , Femenino , Rasgos de la Historia de Vida , Masculino , Microquímica , Fenotipo , Estaciones del Año , Aprendizaje Automático no Supervisado
9.
Rapid Commun Mass Spectrom ; 33(14): 1207-1220, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-30993783

RESUMEN

RATIONALE: Oxygen isotope ratios (δ18 O values) of fish otoliths (ear bones) are valuable geochemical tracers of water conditions and thermal life history. Delta Smelt (Hypomesus transpacificus) are osmerid forage fish endemic to the San Francisco Estuary, California, USA, that are on the verge of extinction. These fish exhibit a complex life history that allows them to survive in a dynamic estuarine environment; however, a rapidly warming climate threatens this thermally sensitive species. Here we quantify the accuracy and precision of using δ18 O values in otoliths to reconstruct the thermal life histories of Delta Smelt. METHODS: Delta Smelt were reared for 360 days using three different water sources with different ambient δ18 Owater values (-8.75‰, -5.28‰, and -4.06‰) and different water temperatures (16.4°C, 16.7°C, 18.7°C, and 20.5°C). Samples were collected after 170 days (n = 28) and 360 days (n = 14) post-hatch. In situ δ18 O values were measured from the core of the otolith to the dorsal edge using secondary ion mass spectrometry (SIMS) to reconstruct temporally resolved thermal life histories. RESULTS: The δ18 Ootolith values for Delta Smelt varied as a linear inverse function of water temperature: 1000 ln α = 18.39 (±0.43, 1SE)(103 TK-1 ) - 34.56 (±1.49, 1SE) and δ18 Ootolith(VPDB) - δ18 Owater (VPDB) = 31.34(±0.09, 1SE) - 0.19(±0.01, 1SE) × T ° C. When the ambient δ18 Owater value is known, this species-specific temperature-dependent oxygen isotope fractionation model facilitated the accurate (0.25°C) and precise (±0.37°C, 2σ) reconstruction of the water temperature experienced by the fish. In contrast, the use of existing general fractionation equations resulted in inaccurate temperature reconstructions. CONCLUSIONS: The species-specific δ18 Ootolith fractionation equation allowed for accurate and precise reconstructions of water temperatures experienced by Delta Smelt. Characterization of ambient δ18 Owater values remains a critical next step for reconstructing thermal life histories of wild Delta Smelt. This tool will provide new insights into habitat utilization, potential thermal refugia, and resilience to future warming for this critically endangered fish.


Asunto(s)
Osmeriformes , Membrana Otolítica/química , Isótopos de Oxígeno/análisis , Animales , Calibración , California , Clima , Ecosistema , Especies en Peligro de Extinción/estadística & datos numéricos , Espectrometría de Masa de Ion Secundario/métodos , Espectrometría de Masa de Ion Secundario/normas , Temperatura
10.
PLoS One ; 14(1): e0208084, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30601817

RESUMEN

Seasonal floodplain wetland is one of the most variable and diverse habitats found in coastal ecosystems, yet it is also one of the most highly altered by humans. The Yolo Bypass, the primary floodplain of the Sacramento River in California's Central Valley, USA, has been shown to provide various benefits to native fishes when inundated. However, the Yolo Bypass exists as a tidal dead-end slough during dry periods and its value to native fishes has been less studied in this state. During the recent drought (2012-2016), we found higher abundance of the endangered Delta Smelt (Hypomesus transpacificus), than the previous 14 years of fish monitoring within the Yolo Bypass. Meanwhile, Delta Smelt abundance elsewhere in the estuary was at record lows during this time. To determine the value of the Yolo Bypass as a nursery habitat for Delta Smelt, we compared growth, hatch dates, and diets of juvenile Delta Smelt collected within the Yolo Bypass with fish collected among other putative nursery habitats in the San Francisco Estuary between 2010 and 2016. Our results indicated that when compared to other areas of the estuary, fish in the Yolo Bypass spawned earlier, and offspring experienced both higher quality feeding conditions and growth rates. The occurrence of healthy juvenile Delta Smelt in the Yolo Bypass suggested that the region may have acted as a refuge for the species during the drought years of 2012-2016. However, our results also demonstrated that no single region provided the best rearing habitat for juvenile Delta Smelt. It will likely require a mosaic of habitats that incorporates floodplain-tidal sloughs in order to promote the resilience of this declining estuarine fish species.


Asunto(s)
Especies en Peligro de Extinción , Inundaciones , Agua Dulce , Osmeriformes/fisiología , Movimientos del Agua , Envejecimiento/fisiología , Animales , Dieta , Estuarios , Geografía , Osmeriformes/crecimiento & desarrollo , Análisis de Regresión , Ríos , San Francisco , Temperatura
11.
PLoS One ; 13(9): e0204519, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30261018

RESUMEN

The IsoFishR application is a data reduction and analysis tool for laser-ablation strontium isotope data, following common best practices and providing reliable and reproducible results. Strontium isotope ratios (87Sr/86Sr) are a powerful geochemical tracer commonly applied in a wide range of scientific fields and laser-ablation inductively coupled mass spectrometry is considered the method of choice to obtain spatially resolved 87Sr/86Sr isotope ratios from a variety of sample materials. However, data reduction and analyses methods are variable between different research groups and research communities limiting reproducibility between studies. IsoFishR provides a platform to standardize these methods and can be used for both spot and time-resolved line transects. Furthermore, it provides advanced data analysis tools and filters for outlier removal, noise reduction, and visualization of time resolved data. The application can be downloaded from GitHub (https://github.com/MalteWillmes/IsoFishR) and the source code is available, encouraging future development and evolution of this software.


Asunto(s)
Espectrometría de Masas/métodos , Espectrometría de Masas/estadística & datos numéricos , Programas Informáticos , Isótopos de Estroncio/análisis , Animales , Interpretación Estadística de Datos , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/estadística & datos numéricos , Fenómenos Geológicos , Membrana Otolítica/crecimiento & desarrollo , Membrana Otolítica/metabolismo , Reproducibilidad de los Resultados , Salmón/crecimiento & desarrollo , Salmón/metabolismo
12.
Sci Total Environ ; 532: 316-26, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26081734

RESUMEN

The abundance of Delta Smelt (Hypomesus transpacificus), a fish species endemic to the upper San Francisco Estuary (SFE), is declining. Several causes for the population decline have been proposed, including food limitation and contaminant effects. Here, using juvenile Delta Smelt collected from throughout their range, we measured a suite of indices across three levels of biological organization (cellular, organ, individual) that reflect fish condition at temporal scales ranging from hours to weeks. Using these indices, the relative conditions of fish collected from five regions in the SFE were compared: Cache Slough, Sacramento River Deep Water Ship Channel, Confluence, Suisun Bay and Suisun Marsh. Fish sampled from Suisun Bay and, to a lesser extent the Confluence, exhibited relatively poor short-term nutritional and growth indices and morphometric condition, while fish from the freshwater regions of the estuary, and Cache Slough in particular, exhibited the most apparent histopathological signs of contaminant exposure. In contrast, fish from the Suisun Marsh region exhibited higher short-term nutrition and growth indices, and better morphometric and histopathological condition. For instance, fish collected from Suisun Marsh had a mean stomach fullness, expressed as a percentage of fish weight, that was 3.4-fold higher than fish collected from Suisun Bay, while also exhibiting an incidence of histopathological lesions that was 11-fold lower than fish collected from Cache Slough. Thus, our findings support the hypothesis that multiple stressors, including food limitation and contaminants, are contributing to the decline of Delta Smelt, and that these stressors influence Delta Smelt heterogeneously across space.


Asunto(s)
Especies en Peligro de Extinción , Osmeriformes , Estrés Fisiológico , Contaminantes Químicos del Agua/análisis , Animales , Monitoreo del Ambiente , Estuarios , San Francisco
13.
PLoS One ; 8(9): e74251, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086325

RESUMEN

Endocrine disrupting chemicals (EDCs) cause physiological abnormalities and population decline in fishes. However, few studies have linked environmental EDC exposures with responses at multiple tiers of the biological hierarchy, including population-level effects. To this end, we undertook a four-tiered investigation in the impacted San Francisco Bay estuary with the Mississippi silverside (Menidia audens), a small pelagic fish. This approach demonstrated links between different EDC sources and fish responses at different levels of biological organization. First we determined that water from a study site primarily impacted by ranch run-off had only estrogenic activity in vitro, while water sampled from a site receiving a combination of urban, limited ranch run-off, and treated wastewater effluent had both estrogenic and androgenic activity. Secondly, at the molecular level we found that fish had higher mRNA levels for estrogen-responsive genes at the site where only estrogenic activity was detected but relatively lower expression levels where both estrogenic and androgenic EDCs were detected. Thirdly, at the organism level, males at the site exposed to both estrogens and androgens had significantly lower mean gonadal somatic indices, significantly higher incidence of severe testicular necrosis and altered somatic growth relative to the site where only estrogens were detected. Finally, at the population level, the sex ratio was significantly skewed towards males at the site with measured androgenic and estrogenic activity. Our results suggest that mixtures of androgenic and estrogenic EDCs have antagonistic and potentially additive effects depending on the biological scale being assessed, and that mixtures containing androgens and estrogens may produce unexpected effects. In summary, evaluating EDC response at multiple tiers is necessary to determine the source of disruption (lowest scale, i.e. cell line) and what the ecological impact will be (largest scale, i.e. sex ratio).


Asunto(s)
Disruptores Endocrinos/toxicidad , Estuarios , Peces , Animales , Secuencia de Bases , Tamaño Corporal , Cartilla de ADN , Femenino , Expresión Génica , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Razón de Masculinidad
14.
Environ Toxicol Chem ; 24(10): 2612-20, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16268164

RESUMEN

We applied otolith growth rate analysis to an investigation of cadmium (Cd)-exposed larval topsmelt (Atherinops affinis) to determine if growth rate was a more sensitive measure than somatic growth (body wt or length). Topsmelt otoliths, calcareous concretions in the fish inner ear, formed daily increments, and otolith growth was proportional to somatic growth. Nine-day posthatch larval topsmelt were exposed to Cd (0-100 ppb) in seawater for 14 d and fed low or high ration levels in separate experiments. Whereas Cd impaired topsmelt growth and growth rates, the extent of growth reduction was dependent on the ration level. At high ration levels, otolith and somatic growth rates of fish exposed to Cd (50 and 100 ppb) were significantly reduced; however, no differences in final mean weight and only marginal differences in final mean length of Cd-exposed topsmelt were observed. At low ration levels, we detected reductions in both somatic growth as well as otolith and somatic growth rates of topsmelt exposed to Cd (50 and 100 ppb). Otolith growth rate analysis was more sensitive than growth measurements of Cd-exposed topsmelt, because it allowed the detection of small differences in growth rates even when differences in somatic growth were not observed.


Asunto(s)
Cadmio/toxicidad , Smegmamorpha/crecimiento & desarrollo , Animales , Peso Corporal , Larva/crecimiento & desarrollo , Valores de Referencia , Pruebas de Toxicidad/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA