Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3601, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684654

RESUMEN

Molybdenum disulfide (MoS2) is widely regarded as a competitive hydrogen evolution reaction (HER) catalyst to replace platinum in proton exchange membrane water electrolysers (PEMWEs). Despite the extensive knowledge of its HER activity, stability insights under HER operation are scarce. This is paramount to ensure long-term operation of Pt-free PEMWEs, and gain full understanding on the electrocatalytically-induced processes responsible for HER active site generation. The latter are highly dependent on the MoS2 allotropic phase, and still under debate. We rigorously assess these by simultaneously monitoring Mo and S dissolution products using a dedicated scanning flow cell coupled with downstream analytics (ICP-MS), besides an electrochemical mass spectrometry setup for volatile species analysis. We observe that MoS2 stability is allotrope-dependent: lamellar-like MoS2 is highly unstable under open circuit conditions, whereas cluster-like amorphous MoS3-x instability is induced by a severe S loss during the HER and undercoordinated Mo site generation. Guidelines to operate non-noble PEMWEs are therefore provided based on the stability number metrics, and an HER mechanism which accounts for Mo and S dissolution pathways is proposed.

2.
ACS Catal ; 14(6): 4303-4317, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38510667

RESUMEN

A current trend in the investigation of state-of-the-art Pt-alloys as proton exchange membrane fuel cell (PEMFC) electrocatalysts is to study their long-term stability as a bottleneck for their full commercialization. Although many parameters have been appropriately addressed, there are still certain issues that must be considered. Here, the stability of an experimental Pt-Co/C electrocatalyst is investigated by high-temperature accelerated degradation tests (HT-ADTs) in a high-temperature disk electrode (HT-DE) setup, allowing the imitation of close-to-real operational conditions in terms of temperature (60 °C). Although the US Department of Energy (DoE) protocol has been chosen as the basis of the study (30,000 trapezoidal wave cycling steps between 0.6 and 0.95 VRHE with a 3 s hold time at both the lower potential limit (LPL) and the upper potential limit (UPL)), this works demonstrates that limiting both the LPL and UPL (from 0.6-0.95 to 0.7-0.85 VRHE) can dramatically reduce the degradation rate of state-of-the-art Pt-alloy electrocatalysts. This has been additionally confirmed with the use of an electrochemical flow cell coupled to inductively coupled plasma mass spectrometry (EFC-ICP-MS), which enables real-time monitoring of the dissolution mechanisms of Pt and Co. In line with the HT-DE methodology observations, a dramatic decrease in the total dissolution of Pt and Co has once again been observed upon narrowing the potential window to 0.7-0.85 VRHE rather than 0.6-0.95 VRHE. Additionally, the effect of the potential hold time at both LPL and UPL on metal dissolution has also been investigated. The findings demonstrate that the dissolution rate of both metals is proportional to the hold time at UPL regardless of the applied potential window, whereas the hold time at the LPL does not appear to be as detrimental to the stability of metals.

3.
ACS Catal ; 14(4): 2473-2486, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38384942

RESUMEN

In the present work, we report on a synergistic relationship between platinum nanoparticles and a titanium oxynitride support (TiOxNy/C) in the context of oxygen reduction reaction (ORR) catalysis. As demonstrated herein, this composite configuration results in significantly improved electrocatalytic activity toward the ORR relative to platinum dispersed on carbon support (Pt/C) at high overpotentials. Specifically, the ORR performance was assessed under an elevated mass transport regime using the modified floating electrode configuration, which enabled us to pursue the reaction closer to PEMFC-relevant current densities. A comprehensive investigation attributes the ORR performance increase to a strong interaction between platinum and the TiOxNy/C support. In particular, according to the generated strain maps obtained via scanning transmission electron microscopy (STEM), the Pt-TiOxNy/C analogue exhibits a more localized strain in Pt nanoparticles in comparison to that in the Pt/C sample. The altered Pt structure could explain the measured ORR activity trend via the d-band theory, which lowers the platinum surface coverage with ORR intermediates. In terms of the Pt particle size effect, our observation presents an anomaly as the Pt-TiOxNy/C analogue, despite having almost two times smaller nanoparticles (2.9 nm) compared to the Pt/C benchmark (4.8 nm), manifests higher specific activity. This provides a promising strategy to further lower the Pt loading and increase the ECSA without sacrificing the catalytic activity under fuel cell-relevant potentials. Apart from the ORR, the platinum-TiOxNy/C interaction is of a sufficient magnitude not to follow the typical particle size effect also in the context of other reactions such as CO stripping, hydrogen oxidation reaction, and water discharge. The trend for the latter is ascribed to the lower oxophilicity of Pt-based on electrochemical surface coverage analysis. Namely, a lower surface coverage with oxygenated species is found for the Pt-TiOxNy/C analogue. Further insights were provided by performing a detailed STEM characterization via the identical location mode (IL-STEM) in particular, via 4DSTEM acquisition. This disclosed that Pt particles are partially encapsulated within a thin layer of TiOxNy origin.

4.
Inorg Chem Front ; 11(2): 323-341, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38235274

RESUMEN

Platinum-based fuel cell electrocatalysts are structured on a nano level in order to extend their active surface area and maximize the utilization of precious and scarce platinum. Their performance is dictated by the atomic arrangement of their surface layers atoms via structure-property relationships. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are the preferred methods for characterizing these catalysts, due to their capacity to achieve local atomic-level resolutions. Size, morphology, strain and local composition are just some of the properties of Pt-based nanostructures that can be obtained by (S)TEM. Furthermore, advanced methods of (S)TEM are able to provide insights into the quasi-in situ, in situ or even operando stability of these nanostructures. In this review, we present state-of-the-art applications of (S)TEM in the investigation and interpretation of structure-activity and structure-stability relationships.

5.
ACS Appl Mater Interfaces ; 15(37): 44482-44492, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37695941

RESUMEN

Development of a robust photocathode using low-cost and high-performing materials, e.g., p-Si, to produce clean fuel hydrogen has remained challenging since the semiconductor substrate is easily susceptible to (photo)corrosion under photoelectrochemical (PEC) operational conditions. A protective layer over the substrate to simultaneously provide corrosion resistance and maintain efficient charge transfer across the device is therefore needed. To this end, in the present work, we utilized pulsed laser deposition (PLD) to prepare a high-quality SrTiO3 (STO) layer to passivate the p-Si substrate using a buffer layer of reduced graphene oxide (rGO). Specifically, a very thin (3.9 nm ∼10 unit cells) STO layer epitaxially overgrown on rGO-buffered Si showed the highest onset potential (0.326 V vs RHE) in comparison to the counterparts with thicker and/or nonepitaxial STO. The photovoltage, flat-band potential, and electrochemical impedance spectroscopy measurements revealed that the epitaxial photocathode was more beneficial for charge separation, charge transfer, and targeted redox reaction than the nonepitaxial one. The STO/rGO/Si with a smooth and highly epitaxial STO layer outperforming the directly contacted STO/Si with a textured and polycrystalline STO layer showed the importance of having a well-defined passivation layer. In addition, the numerous pinholes formed in the directly contacted STO/Si led to the rapid degradation of the photocathode during the PEC measurements. The stability tests demonstrated the soundness of the epitaxial STO layer in passivating Si against corrosion. This study provided a facile approach for preparing a robust protection layer over a photoelectrode substrate in realizing an efficient and, at the same time, durable PEC device.

6.
ACS Appl Nano Mater ; 6(12): 10421-10430, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37384128

RESUMEN

Aiming at speeding up the discovery and understanding of promising electrocatalysts, a novel experimental platform, i.e., the Nano Lab, is introduced. It is based on state-of-the-art physicochemical characterization and atomic-scale tracking of individual synthesis steps as well as subsequent electrochemical treatments targeting nanostructured composites. This is provided by having the entire experimental setup on a transmission electron microscopy (TEM) grid. Herein, the oxygen evolution reaction nanocomposite electrocatalyst, i.e., iridium nanoparticles dispersed on a high-surface-area TiOxNy support prepared on the Ti TEM grid, is investigated. By combining electrochemical concepts such as anodic oxidation of TEM grids, floating electrode-based electrochemical characterization, and identical location TEM analysis, relevant information from the entire composite's cycle, i.e., from the initial synthesis step to electrochemical operation, can be studied. We reveal that Ir nanoparticles as well as the TiOxNy support undergo dynamic changes during all steps. The most interesting findings made possible by the Nano Lab concept are the formation of Ir single atoms and only a small decrease in the N/O ratio of the TiOxNy-Ir catalyst during the electrochemical treatment. In this way, we show that the precise influence of the nanoscale structure, composition, morphology, and electrocatalyst's locally resolved surface sites can be deciphered on the atomic level. Furthermore, the Nano Lab's experimental setup is compatible with ex situ characterization and other analytical methods, such as Raman spectroscopy, X-ray photoelectron spectroscopy, and identical location scanning electron microscopy, hence providing a comprehensive understanding of structural changes and their effects. Overall, an experimental toolbox for the systematic development of supported electrocatalysts is now at hand.

7.
Materials (Basel) ; 16(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176426

RESUMEN

In the past, platinum-copper catalysts have proven to be highly active for the oxygen reduction reaction (ORR), but transferring the high activities measured in thin-film rotating disk electrodes (TF-RDEs) to high-performing membrane electrode assemblies (MEAs) has proven difficult due to stability issues during operation. High initial performance can be achieved. However, fast performance decay on a timescale of 24 h is induced by repeated voltage load steps with H2/air supplied. This performance decay is accelerated if high relative humidity (>60% RH) is set for a prolonged time and low voltages are applied during polarization. The reasons and possible solutions for this issue have been investigated by means of electrochemical impedance spectroscopy and distribution of relaxation time analysis (EIS-DRT). The affected electrochemical sub-processes have been identified by comparing the PtCu electrocatalyst with commercial Pt/C benchmark materials in homemade catalyst-coated membranes (CCMs). The proton transport resistance (Rpt) increased by a factor of ~2 compared to the benchmark materials. These results provide important insight into the challenges encountered with the de-alloyed PtCu/KB electrocatalyst during cell break-in and operation. This provides a basis for improvements in the catalysts' design and break-in procedures for the highly attractive PtCu/KB catalyst system.

8.
Chem Mater ; 35(6): 2612-2623, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37008408

RESUMEN

A versatile approach to the production of cluster- and single atom-based thin-film electrode composites is presented. The developed TiO x N y -Ir catalyst was prepared from sputtered Ti-Ir alloy constituted of 0.8 ± 0.2 at % Ir in α-Ti solid solution. The Ti-Ir solid solution on the Ti metal foil substrate was anodically oxidized to form amorphous TiO2-Ir and later subjected to heat treatment in air and in ammonia to prepare the final catalyst. Detailed morphological, structural, compositional, and electrochemical characterization revealed a nanoporous film with Ir single atoms and clusters that are present throughout the entire film thickness and concentrated at the Ti/TiO x N y -Ir interface as a result of the anodic oxidation mechanism. The developed TiO x N y -Ir catalyst exhibits very high oxygen evolution reaction activity in 0.1 M HClO4, reaching 1460 A g-1 Ir at 1.6 V vs reference hydrogen electrode. The new preparation concept of single atom- and cluster-based thin-film catalysts has wide potential applications in electrocatalysis and beyond. In the present paper, a detailed description of the new and unique method and a high-performance thin film catalyst are provided along with directions for the future development of high-performance cluster and single-atom catalysts prepared from solid solutions.

9.
RSC Adv ; 13(7): 4601-4611, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36760270

RESUMEN

The design of catalysts with stable and finely dispersed platinum or platinum alloy nanoparticles on the carbon support is key in controlling the performance of proton exchange membrane (PEM) fuel cells. In the present work, an intermetallic PtCo/C catalyst is synthesized via double-passivation galvanic displacement. TEM and XRD confirm a significantly narrowed particle size distribution for the catalyst particles compared to commercial benchmark catalysts (Umicore PtCo/C). Only about 10% of the mass fraction of PtCo particles show a diameter larger than 8 nm, whereas this is up to or even more than 35% for the reference systems. This directly results in a considerable increase in electrochemically active surface area (96 m2 g-1 vs. >70 m2 g-1), which confirms the more efficient usage of precious catalyst metal in the novel catalyst. Single-cell tests validate this finding by improved PEM fuel cell performance. Reducing the cathode catalyst loading from 0.4 mg cm-2 to 0.25 mg cm-2 resulted in a power density drop at an application-relevant 0.7 V of only 4% for the novel catalyst, compared to the 10% and 20% for the commercial benchmarks reference catalysts.

10.
Chem Commun (Camb) ; 58(100): 13832-13854, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36472187

RESUMEN

Carbon-supported Pt-based nanoalloys (CSPtNs) as the oxygen reduction reaction (ORR) electrocatalysts are considered state-of-the-art electrocatalysts for use in proton exchange membrane fuel cells (PEMFCs). Although their ORR activity performance is already adequate to allow lowering of the Pt loading and thus commercialisation of the fuel cell technology, their stability remains an open challenge. In this Feature Article, the recent achievements and acquired knowledge on the degradation behaviour of these electrocatalysts are overviewed and discussed.

11.
ACS Catal ; 12(24): 15135-15145, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36570081

RESUMEN

Decreasing iridium loading in the electrocatalyst presents a crucial challenge in the implementation of proton exchange membrane (PEM) electrolyzers. In this respect, fine dispersion of Ir on electrically conductive ceramic supports is a promising strategy. However, the supporting material needs to meet the demanding requirements such as structural stability and electrical conductivity under harsh oxygen evolution reaction (OER) conditions. Herein, nanotubular titanium oxynitride (TiON) is studied as a support for iridium nanoparticles. Atomically resolved structural and compositional transformations of TiON during OER were followed using a task-specific advanced characterization platform. This combined the electrochemical treatment under floating electrode configuration and identical location transmission electron microscopy (IL-TEM) analysis of an in-house-prepared Ir-TiON TEM grid. Exhaustive characterization, supported by density functional theory (DFT) calculations, demonstrates and confirms that both the Ir nanoparticles and single atoms induce a stabilizing effect on the ceramic support via marked suppression of the oxidation tendency of TiON under OER conditions.

12.
ACS Catal ; 12(20): 13021-13033, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36313525

RESUMEN

Water electrolysis powered by renewables is regarded as the feasible route for the production of hydrogen, obtained at the cathode side through electrochemical hydrogen evolution reaction (HER). Herein, we present a rational strategy to improve the overall HER catalytic performance of Pt, which is known as the best monometallic catalyst for this reaction, by supporting it on a conductive titanium oxynitride (TiON x ) dispersed over reduced graphene oxide nanoribbons. Characterization of the Pt/TiON x composite revealed the presence of small Pt particles with diameters between 2 and 3 nm, which are well dispersed over the TiON x support. The Pt/TiON x nanocomposite exhibited improved HER activity and stability with respect to the Pt/C benchmark in an acid electrolyte, which was ascribed to the strong metal-support interaction (SMSI) triggered between the TiON x support and grafted Pt nanoparticles. SMSI between TiON x and Pt was evidenced by X-ray photoelectron spectroscopy (XPS) through a shift of the binding energies of the characteristic Pt 4f photoelectron lines with respect to Pt/C. Density functional theory (DFT) calculations confirmed the strong interaction between Pt nanoparticles and the TiON x support. This strong interaction improves the stability of Pt nanoparticles and weakens the binding of chemisorbed H atoms thereon. Both of these effects may result in enhanced HER activity.

13.
ACS Appl Energy Mater ; 5(7): 8862-8877, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35909804

RESUMEN

Pt-alloy (Pt-M) nanoparticles (NPs) with less-expensive 3d transition metals (M = Ni, Cu, Co) supported on high-surface-area carbon supports are currently the state-of-the-art (SoA) solution to reach the production phase in proton exchange membrane fuel cells (PEMFCs). However, while Pt-M electrocatalysts show promise in terms of increased activity for oxygen reduction reaction (ORR) and, thus, cost reductions from the significantly lower use of expensive and rare Pt, key challenges in terms of synthesis, activation, and stability remain to unlock their true potential. This work systematically tackles them with a combination of electrocatalyst synthesis and characterization methodologies including thin-film rotating disc electrodes (TF-RDEs), an electrochemical flow cell linked to an inductively coupled plasma mass spectrometer (EFC-ICP-MS), and testing in 50 cm2 membrane electrode assemblies (MEAs). In the first part of the present work, we highlight the crucial importance of the chemical activation (dealloying) step on the performance of Pt-M electrocatalysts in the MEA at high current densities (HCDs). In addition, we provide the scientific community with a preliminary and facile method of distinguishing between a "poorly" and "adequately" dealloyed (activated) Pt-alloy electrocatalyst using a much simpler and affordable TF-RDE methodology using the well-known CO-stripping process. Since the transition-metal cations can also be introduced in a PEMFC due to the degradation of the Pt-M NPs, the second part of the work focuses on presenting clear evidence on the direct impact of the lower voltage limit (LVL) on the stability of Pt-M electrocatalysts. The data suggests that in addition to intrinsic improvements in stability, significant improvements in the PEMFC lifetime can also be obtained via the correct MEA design and applied limits of operation, namely, restricting not just the upper but equally important also the lower operation voltage.

14.
ACS Catal ; 12(15): 9540-9548, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35966603

RESUMEN

The lack of efficient and durable proton exchange membrane fuel cell electrocatalysts for the oxygen reduction reaction is still restraining the present hydrogen technology. Graphene-based carbon materials have emerged as a potential solution to replace the existing carbon black (CB) supports; however, their potential was never fully exploited as a commercial solution because of their more demanding properties. Here, a unique and industrially scalable synthesis of platinum-based electrocatalysts on graphene derivative (GD) supports is presented. With an innovative approach, highly homogeneous as well as high metal loaded platinum-alloy (up to 60 wt %) intermetallic catalysts on GDs are achieved. Accelerated degradation tests show enhanced durability when compared to the CB-supported analogues including the commercial benchmark. Additionally, in combination with X-ray photoelectron spectroscopy Auger characterization and Raman spectroscopy, a clear connection between the sp 2 content and structural defects in carbon materials with the catalyst durability is observed. Advanced gas diffusion electrode results show that the GD-supported catalysts exhibit excellent mass activities and possess the properties necessary to reach high currents if utilized correctly. We show record-high peak power densities in comparison to the prior best literature on platinum-based GD-supported materials which is promising information for future application.

15.
Nanomaterials (Basel) ; 12(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35808013

RESUMEN

Titanium oxynitride carbon composite nanofibers (TiON/C-CNFs) were synthesised with electrospinning and subsequent heat treatment in ammonia gas. In situ four-probe electrical conductivity measurements of individual TiON/C-CNFs were performed. Additionally, the TiON/C-CNFs were thoroughly analysed with various techniques, such as X-ray and electron diffractions, electron microscopies and spectroscopies, thermogravimetric analysis and chemical analysis to determine the crystal structure, morphology, chemical composition, and N/O at. ratio. It was found that nanofibers were composed of 2-5 nm sized titanium oxynitride (TiON) nanoparticles embedded in an amorphous carbon matrix with a small degree of porosity. The average electrical conductivity of a single TiON/C-CNF was 1.2 kS/m and the bulk electrical conductivity of the TiON/C-CNF fabric was 0.053 kS/m. From the available data, the mesh density of the TiON/C-CNF fabric was estimated to have a characteristic length of 1.0 µm and electrical conductivity of a single TiON/C-CNF was estimated to be from 0.45 kS/m to 19 kS/m. The electrical conductivity of the measured TiON/C-CNFs is better than that of amorphous carbon nanofibers and has ohmic behaviour, which indicates that it can effectively serve as a new type of support material for electrocatalysts, batteries, sensors or supercapacitors.

16.
ACS Omega ; 7(4): 3540-3548, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35128261

RESUMEN

Degradation of carbon-supported Pt nanocatalysts in fuel cells and electrolyzers hinders widespread commercialization of these green technologies. Transition between oxidized and reduced states of Pt during fast potential spikes triggers significant Pt dissolution. Therefore, designing Pt-based catalysts able to withstand such conditions is of critical importance. We report here on a strategy to suppress Pt dissolution by using an organic matrix tris(aza)pentacene (TAP) as an alternative support material for Pt. The major benefit of TAP is its potential-dependent conductivity in aqueous media, which was directly evidenced by electrochemical impedance spectroscopy. At potentials below ∼0.45 VRHE, TAP is protonated and its conductivity is improved, which enables supported Pt to run hydrogen reactions. At potentials corresponding to Pt oxidation/reduction (>∼0.45 VRHE), TAP is deprotonated and its conductivity is restricted. Tunable conductivity of TAP enhanced the durability of the Pt/TAP with respect to Pt/C when these two materials were subjected to the same degradation protocol (0.1 M HClO4 electrolyte, 3000 voltammetric scans, 1 V/s, 0.05-1.4 VRHE). The exceptional stability of Pt/TAP composite on a nanoscale level was confirmed by identical location TEM imaging before and after the used degradation protocol. Suppression of transient Pt dissolution from Pt/TAP with respect to the Pt/C benchmark was directly measured in a setup consisting of an electrochemical flow cell connected to inductively coupled plasma-mass spectrometry.

17.
ACS Catal ; 12(1): 101-115, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35028189

RESUMEN

The present research provides a study of carbon-supported intermetallic Pt-alloy electrocatalysts and assesses their stability against metal dissolution in relation to the operating temperature and the potential window using two advanced electrochemical methodologies: (i) the in-house designed high-temperature disk electrode (HT-DE) methodology as well as (ii) a modification of the electrochemical flow cell coupled to an inductively coupled plasma mass spectrometer (EFC-ICP-MS) methodology, allowing for highly sensitive time- and potential-resolved measurements of metal dissolution. While the rate of carbon corrosion follows the Arrhenius law and increases exponentially with temperature, the findings of the present study contradict the generally accepted hypothesis that the kinetics of Pt and subsequently the less noble metal dissolution are supposed to be for the most part unaffected by temperature. On the contrary, clear evidence is presented that in addition to the importance of the voltage/potential window, the temperature is one of the most critical parameters governing the stability of Pt and thus, in the case of Pt-alloy electrocatalysts, also the ability of the nanoparticles (NPs) to retain the less noble metal. Lastly, but also very importantly, results indicate that the rate of Pt redeposition significantly increases with temperature, which has been the main reason why mechanistic interpretation of the temperature-dependent kinetics related to the stability of Pt remained highly speculative until now.

18.
ChemCatChem ; 14(20): e202200586, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36605357

RESUMEN

The commercialization of acidic proton exchange membrane water electrolyzers (PEMWE) is heavily hindered by the price and scarcity of oxygen evolution reaction (OER) catalyst, i. e. iridium and its oxides. One of the solutions to enhance the utilization of this precious metal is to use a support to distribute well dispersed Ir nanoparticles. In addition, adequately chosen support can also impact the activity and stability of the catalyst. However, not many materials can sustain the oxidative and acidic conditions of OER in PEMWE. Hereby, we critically and extensively review the different materials proposed as possible supports for OER in acidic media and the effect they have on iridium performances.

19.
Angew Chem Int Ed Engl ; 61(14): e202114437, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-34942052

RESUMEN

The widespread utilization of proton exchange membrane (PEM) electrolyzers currently remains uncertain, as they rely on the use of highly scarce iridium as the only viable catalyst for the oxygen evolution reaction (OER), which is known to present the major energy losses of the process. Understanding the mechanistic origin of the different activities and stabilities of Ir-based catalysts is, therefore, crucial for a scale-up of green hydrogen production. It is known that structure influences the dissolution, which is the main degradation mechanism and shares common intermediates with the OER. In this Minireview, the state-of-the-art understanding of dissolution and its relationship with the structure of different iridium catalysts is gathered and correlated to different mechanisms of the OER. A perspective on future directions of investigation is also given.

20.
ACS Catal ; 11(20): 12510-12519, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34676130

RESUMEN

The production of hydrogen via a proton-exchange membrane water electrolyzer (PEM-WE) is directly dependent on the rational design of electrocatalysts for the anodic oxygen evolution reaction (OER), which is the bottleneck of the process. Here, we present a smart design strategy for enhancing Ir utilization and stabilization. We showcase it on a catalyst, where Ir nanoparticles are efficiently anchored on a conductive support titanium oxynitride (TiON x ) dispersed over carbon-based Ketjen Black and covered by a thin layer of copper (Ir/CuTiON x /C), which gets removed in the preconditioning step. Electrochemical OER activity, stability, and structural changes were compared to the Ir-based catalyst, where Ir nanoparticles without Cu are deposited on the same support (Ir/TiON x /C). To study the effect of the sacrificial less-noble metal layer on the catalytic performance of the synthesized material, characterization methods, namely X-ray powder diffraction, X-ray photoemission spectroscopy, and identical location transmission electron microscopy were employed and complemented with scanning flow cell coupled to an inductively coupled plasma mass spectrometer, which allowed studying the online dissolution during the catalytic reaction. Utilization of these advanced methods revealed that the sacrificial Cu layer positively affects both Ir OER mass activity and its durability, which was assessed via S-number, a recently reported stability metric. Improved activity of Cu analogue was ascribed to the higher surface area of smaller Ir nanoparticles, which are better stabilized through a strong metal-support interaction (SMSI) effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA