Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 92
1.
Proc Natl Acad Sci U S A ; 121(19): e2322164121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38687799

Proteins carrying a signal peptide and/or a transmembrane domain enter the intracellular secretory pathway at the endoplasmic reticulum (ER) and are transported to the Golgi apparatus via COPII vesicles or tubules. SAR1 initiates COPII coat assembly by recruiting other coat proteins to the ER membrane. Mammalian genomes encode two SAR1 paralogs, SAR1A and SAR1B. While these paralogs exhibit ~90% amino acid sequence identity, it is unknown whether they perform distinct or overlapping functions in vivo. We now report that genetic inactivation of Sar1a in mice results in lethality during midembryogenesis. We also confirm previous reports that complete deficiency of murine Sar1b results in perinatal lethality. In contrast, we demonstrate that deletion of Sar1b restricted to hepatocytes is compatible with survival, though resulting in hypocholesterolemia that can be rescued by adenovirus-mediated overexpression of either SAR1A or SAR1B. To further examine the in vivo function of these two paralogs, we genetically engineered mice with the Sar1a coding sequence replacing that of Sar1b at the endogenous Sar1b locus. Mice homozygous for this allele survive to adulthood and are phenotypically normal, demonstrating complete or near-complete overlap in function between the two SAR1 protein paralogs in mice. These data also suggest upregulation of SAR1A gene expression as a potential approach for the treatment of SAR1B deficiency (chylomicron retention disease) in humans.


Monomeric GTP-Binding Proteins , Animals , Humans , Mice , COP-Coated Vesicles/metabolism , COP-Coated Vesicles/genetics , Endoplasmic Reticulum/metabolism , Hepatocytes/metabolism , Mice, Knockout , Monomeric GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/genetics
2.
Toxicol Pathol ; 52(1): 67-80, 2024 Jan.
Article En | MEDLINE | ID: mdl-38477038

NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice, lacking many components of a mature immune system, are at increased risk of disease. General understanding of potential pathogens of these mice is limited. We describe a high mortality disease outbreak caused by an opportunistic bacterial infection in NSG mice. Affected animals exhibited perianal fecal staining, dehydration, and wasting. Histopathologic lesions included a primary necrotizing enterocolitis, with inflammatory and necrotizing lesions also occurring in the liver, kidneys, heart, and brain of some mice. All affected individuals tested negative for known opportunistic pathogens of immunodeficient mice. We initially identified a member of Enterobacter cloacae complex (ECC) in association with the outbreak by traditional diagnostics. ECC was cultured from extraintestinal organs, both with and without histopathologic lesions, suggesting bacteremia. Infrared spectroscopy and MALDI-TOF mass spectrometry demonstrated that isolates from the outbreak shared molecular features and likely a common origin. We subsequently hypothesized that advanced sequencing methods would identify a single species of ECC associated with clinical disease. Using a novel targeted amplicon-based next-generation sequencing assay, we identified Enterobacter hormaechei in association with this outbreak. Knowledge of this organism as a potential opportunistic pathogen in NSG mice is critical for preclinical studies to prevent loss of animals and confounding of research.


Enterobacter , Enterobacteriaceae Infections , Animals , Female , Mice , Disease Outbreaks , Enterobacter/genetics , Enterobacter/isolation & purification , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/microbiology , High-Throughput Nucleotide Sequencing , Mice, Inbred NOD
3.
bioRxiv ; 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38463989

Proteins carrying a signal peptide and/or a transmembrane domain enter the intracellular secretory pathway at the endoplasmic reticulum (ER) and are transported to the Golgi apparatus via COPII vesicles or tubules. SAR1 initiates COPII coat assembly by recruiting other coat proteins to the ER membrane. Mammalian genomes encode two SAR1 paralogs, SAR1A and SAR1B. While these paralogs exhibit ~90% amino acid sequence identity, it is unknown whether they perform distinct or overlapping functions in vivo. We now report that genetic inactivation of Sar1a in mice results in lethality during mid-embryogenesis. We also confirm previous reports that complete deficiency of murine Sar1b results in perinatal lethality. In contrast, we demonstrate that deletion of Sar1b restricted to hepatocytes is compatible with survival, though resulting in hypocholesterolemia that can be rescued by adenovirus-mediated overexpression of either SAR1A or SAR1B. To further examine the in vivo function of these 2 paralogs, we genetically engineered mice with the Sar1a coding sequence replacing that of Sar1b at the endogenous Sar1b locus. Mice homozygous for this allele survive to adulthood and are phenotypically normal, demonstrating complete or near-complete overlap in function between the two SAR1 protein paralogs in mice. These data also suggest upregulation of SAR1A gene expression as a potential approach for the treatment of SAR1B deficiency (chylomicron retention disease) in humans.

4.
Vet Pathol ; : 3009858241230103, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38345017

Mycobacterium ulcerans ecovar Liflandii (MuLiflandii) was identified as the causative agent of mycobacteriosis in a research colony of Zaire dwarf clawed frogs (Hymenochirus boettgeri) at the University of Michigan. Clinical presentation included lethargy, generalized septicemia, cutaneous granulomas, coelomic effusion, and acute mortality. Identification of the mycobacterial species was based on molecular, microbiological, and histopathologic characteristics. These findings indicate that MuLiflandii is a primary cause of morbidity and mortality in Zaire dwarf clawed frogs and should be considered in the differential diagnosis of sepsis and coelomic effusion in amphibians. Mycobacterial speciation is important given the variability in pathogenesis within the family Mycobacteriaceae and the implications for both animal and human health as potential zoonoses. The Zaire dwarf clawed frog is a species common in the pet trade, and these findings provide consideration for this pathogen as a potentially important public health concern. This is the first report of MuLiflandii infection in the genus Hymenochirus and illustrates the diagnostic challenges of differentiating among both mycolactone-producing mycobacteria and Mycobacterium marinum. Furthermore, we demonstrate the utility of environmental sampling for this pathogen within the tank system, suggesting this mode of sampling could replace the need for direct frog surveillance.

5.
J Am Assoc Lab Anim Sci ; 63(1): 41-48, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38065567

Mechanical ventilation can be used in mice to support high-risk anesthesia or to create clinically relevant, intensive care models. However, the choice of anesthetic and inspired oxygen concentration for prolonged procedures may affect basic physiology and lung inflammation. To characterize the effects of anesthetics and oxygen concentration in mice experiencing mechanical ventilation, mice were anesthetized with either isoflurane or pentobarbital for tracheostomy followed by mechanical ventilation with either 100% or 21% oxygen. Body temperature, oxygen saturation, and pulse rate were monitored continuously. After 6 h, mice were euthanized for collection of blood and bronchoalveolar lavage fluid for evaluation of biomarkers of inflammation and lung injury, including cell counts and cytokine levels. Overall, both isoflurane and pentobarbital provided suitable anesthesia for 6 h of mechanical ventilation with either 21% or 100% oxygen. We found no differences in lung inflammation biomarkers attributable to either oxygen concentration or the anesthetic. However, the combination of pentobarbital and 100% oxygen resulted in a significantly higher concentration of a biomarker for lung epithelial cell injury. This study demonstrates that the combination of anesthetic agent, mechanical ventilation, and inspired oxygen concentrations can alter vital signs and lung injury biomarkers during prolonged procedures. Their combined impact may influence model development and the interpretation of research results, warranting the need for preliminary evaluation to establish the baseline effects.


Anesthesia , Anesthetics , Isoflurane , Lung Injury , Pneumonia , Rodent Diseases , Mice , Animals , Isoflurane/pharmacology , Pentobarbital , Respiration, Artificial/veterinary , Anesthesia/veterinary , Oxygen , Biomarkers
6.
FASEB J ; 37(8): e23100, 2023 08.
Article En | MEDLINE | ID: mdl-37462673

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that stimulates the proliferation and differentiation of granulocyte and macrophage precursors. The mouse gene-encoding GM-CSF, Csf2, is regulated at both transcriptional and post-transcriptional levels. An adenine-uridine-rich element (ARE) within the 3'-untranslated region of Csf2 mRNA was shown in cell transfection studies to confer instability on this transcript. To explore the physiological importance of this element in an intact animal, we generated mice with a knock-in deletion of the 75-nucleotide ARE. Mice heterozygous for this ARE deletion developed severe respiratory distress and death within about 12 weeks of age. There was dense infiltration of lung alveolar spaces by crystal-containing macrophages. Increased stability of Csf2 mRNA was confirmed in bone marrow-derived macrophages, and elevated GM-CSF levels were observed in serum and lung. These mice did not exhibit notable abnormalities in blood or bone marrow, and transplantation of bone marrow from mutant mice into lethally irradiated WT mice did not confer the pulmonary phenotype. Mice with a conditional deletion of the ARE restricted to lung type II alveolar cells exhibited an essentially identical lethal lung phenotype at the same ages as the mice with the whole-body deletion. In contrast, mice with the same conditional ARE deletion in myeloid cells, including macrophages, exhibited lesser degrees of macrophage infiltration into alveolar spaces much later in life, at approximately 9 months of age. Post-transcriptional Csf2 mRNA stability regulation in pulmonary alveolar epithelial cells appears to be essential for normal physiological GM-CSF secretion and pulmonary macrophage homeostasis.


Granulocyte-Macrophage Colony-Stimulating Factor , Pneumonia , Animals , Mice , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Lung/metabolism , Macrophages, Alveolar/metabolism , Pneumonia/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Cancers (Basel) ; 15(14)2023 Jul 10.
Article En | MEDLINE | ID: mdl-37509222

Adrenocortical carcinoma (ACC) is a rare but highly aggressive cancer with limited treatment options and poor survival for patients with advanced disease. An improved understanding of the transcriptional programs engaged in ACC will help direct rational, targeted therapies. Whereas activating mutations in Wnt/ß-catenin signaling are frequently observed, the ß-catenin-dependent transcriptional targets that promote tumor progression are poorly understood. To address this question, we analyzed ACC transcriptome data and identified a novel Wnt/ß-catenin-associated signature in ACC enriched for the extracellular matrix (ECM) and predictive of poor survival. This suggested an oncogenic role for Wnt/ß-catenin in regulating the ACC microenvironment. We further investigated the minor fibrillar collagen, collagen XI alpha 1 (COL11A1), and found that COL11A1 expression originates specifically from cancer cells and is strongly correlated with both Wnt/ß-catenin activation and poor patient survival. Inhibition of constitutively active Wnt/ß-catenin signaling in the human ACC cell line, NCI-H295R, significantly reduced the expression of COL11A1 and other ECM components and decreased cancer cell viability. To investigate the preclinical potential of Wnt/ß-catenin inhibition in the adrenal microenvironment, we developed a minimally invasive orthotopic xenograft model of ACC and demonstrated that treatment with the newly developed Wnt/ß-catenin:TBL1 inhibitor Tegavivint significantly reduced tumor growth. Together, our data support that the inhibition of aberrantly active Wnt/ß-catenin disrupts transcriptional reprogramming of the microenvironment and reduces ACC growth and survival. Furthermore, this ß-catenin-dependent oncogenic program can be therapeutically targeted with a newly developed Wnt/ß-catenin inhibitor. These results show promise for the further clinical development of Wnt/ß-catenin inhibitors in ACC and unveil a novel Wnt/ß-catenin-regulated transcriptome.

8.
bioRxiv ; 2023 Jun 08.
Article En | MEDLINE | ID: mdl-37333373

The main deterrent to long-term space travel is the risk of Radiation Exposure Induced Death (REID). The National Aeronautics and Space Administration (NASA) has adopted Permissible Exposure Levels (PELs) to limit the probability of REID to 3% for the risk of death due to radiation-induced carcinogenesis. The most significant contributor to current REID estimates for astronauts is the risk of lung cancer. Recently updated lung cancer estimates from Japan's atomic bomb survivors showed that the excess relative risk of lung cancer by age 70 is roughly four-fold higher in females compared to males. However, whether sex differences may impact the risk of lung cancer due to exposure to high charge and energy (HZE) radiation is not well studied. Thus, to evaluate the impact of sex differences on the risk of solid cancer development post-HZE radiation exposure, we irradiated Rb fl/fl ; Trp53 fl/+ male and female mice infected with Adeno-Cre with various doses of 320 kVp X-rays or 600 MeV/n 56 Fe ions and monitored them for any radiation-induced malignancies. We observed that lung adenomas/carcinomas and esthesioneuroblastomas (ENBs) were the most common primary malignancies in X-ray and 56 Fe ion-exposed mice, respectively. In addition, 1 Gy 56 Fe ion exposure compared to X-rays led to a significantly higher incidence of lung adenomas/carcinomas (p=0.02) and ENBs (p<0.0001). However, we did not find a significantly higher incidence of any solid malignancies in female mice as compared to male mice, regardless of radiation quality. Furthermore, gene expression analysis of ENBs suggested a distinct gene expression pattern with similar hallmark pathways altered, such as MYC targets and MTORC1 signaling, in X-ray and 56 Fe ion-induced ENBs. Thus, our data revealed that 56 Fe ion exposure significantly accelerated the development of lung adenomas/carcinomas and ENBs compared to X-rays, but the rate of solid malignancies was similar between male and female mice, regardless of radiation quality.

9.
Cancers (Basel) ; 15(4)2023 Feb 09.
Article En | MEDLINE | ID: mdl-36831460

HER2 overexpression occurs in 10-20% of breast cancer patients. HER2+ tumors are characterized by an increase in Ki67, early relapse, and increased metastasis. Little is known about the factors influencing early stages of HER2- tumorigenesis and diagnostic markers. Previously, it was shown that the deletion of NEDD9 in mouse models of HER2 cancer interferes with tumor growth, but the role of NEDD9 upregulation is currently unexplored. We report that NEDD9 is overexpressed in a significant subset of HER2+ breast cancers and correlates with a limited response to anti-HER2 therapy. To investigate the mechanisms through which NEDD9 influences HER2-dependent tumorigenesis, we generated MMTV-Cre-NEDD9 transgenic mice. The analysis of mammary glands shows extensive ductal epithelium hyperplasia, increased branching, and terminal end bud expansion. The addition of oncogene Erbb2 (neu) leads to the earlier development of early hyperplastic benign lesions (~16 weeks), with a significantly shorter latency than the control mice. Similarly, NEDD9 upregulation in MCF10A-derived acini leads to hyperplasia-like DCIS. This phenotype is associated with activation of ERK1/2 and AURKA kinases, leading to an increased proliferation of luminal cells. These findings indicate that NEDD9 is setting permissive conditions for HER2-induced tumorigenesis, thus identifying this protein as a potential diagnostic marker for early detection.

10.
Vet Pathol ; 60(3): 394-401, 2023 05.
Article En | MEDLINE | ID: mdl-36803058

An outbreak of morbidity and mortality in an African dwarf frog (Hymenochirus curtipes) colony was reported following arrival at an animal research facility. Animals were found dead on arrival or became moribund shortly thereafter, and additional animals showed clinical signs of lethargy, weight loss, and anorexia over the following 3 weeks. Externally, some affected animals presented with multifocal areas of hyperemia in the inguinal and axillary areas and on the limbs, and mottled tan discoloration along the ventral abdomen. Histologically, lesions were consistent with generalized septicemia, characterized by granulomatous meningitis, otitis media, peritonitis (coelomitis), myocarditis and pericarditis, nephritis, pneumonia, and arthritis. Gram staining identified gram-negative rod-shaped bacteria free within tissues and within macrophages. Culture results of coelomic swabs identified moderate to numerous Elizabethkingia miricola. Testing of water from tanks housing affected animals showed elevated levels of nitrites and ammonia, and the presence of Citrobacter, Aeromonas, Pseudomonas, and Staphylococcus spp. cultured from several tank biofilters. E miricola is a newly recognized and rapidly emerging opportunistic pathogen in anurans and has been reported as a cause of septicemia in humans. This report documents the first occurrence of E. miricola septicemia in African dwarf frogs and illustrates the importance of this potential pathogen in the laboratory setting for amphibian research colonies, as well as those individuals directly working with them.


Flavobacteriaceae , Sepsis , Humans , Animals , Anura , Sepsis/veterinary
11.
ASAIO J ; 68(10): 1282-1289, 2022 10 01.
Article En | MEDLINE | ID: mdl-36194099

Currently, normothermic ex vivo heart perfusion (NEVHP) is limited to 6-12 hours. NEVHP for 24 hours or more would allow organ treatment, assessment of organ function, and near-perfect recipient matching. We present a model of NEVHP using continuous hemofiltration (HFn) with sustained myocardial viability up to 24 hours. Twenty hearts from 6-10 kg piglets were procured and maintained on our NEVHP circuit. HFn hearts (n = 10) underwent NEVHP with HFn, whereas controls (n = 10) used NEVHP alone. All HFn vs. four controls were viable at 24 h (p = 0.004). At end perfusion, HFn hearts had higher left ventricular systolic pressure (51.5 ± 6.8 mm Hg, 38.3 ± 5.2 mm Hg, p = 0.05), lower coronary resistance (0.83 ± 0.11 mm Hg/mL/min, 1.18 ± 0.21mmHg/mL/min, p < 0.05), and lower serum lactate levels (2.9 ± 0.4 mmol/L, 4.1 ± 0.6 mmol/L, p < 0.0001) when compared to control hearts. HFn hearts also had less extensive myocardial damage and significantly less edema than control hearts with lower weight gain and wet-dry ratios. Using our circuit, NEVHP for 24 hours is possible with HFn and allows for preservation of myocardial function, improved tissue viability, decreased tissue edema, and less myocardial injury.


Heart Transplantation , Hemofiltration , Animals , Edema , Heart , Lactates , Myocardium , Organ Preservation , Perfusion , Swine
12.
Toxicol Pathol ; 50(7): 836-857, 2022 10.
Article En | MEDLINE | ID: mdl-36165586

The 2022 annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri," was held in Austin, Texas at the Society of Toxicologic Pathology's 40th annual meeting during a half-day session on Sunday, June 19. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks along with select images that were used by the audience for voting and discussion. Various lesions and topics covered during the symposium included induced and spontaneous neoplastic and nonneoplastic lesions in the mouse lung, spontaneous lesions in the reproductive tract of a female cynomolgus macaque, induced vascular lesions in a mouse asthma model and interesting case studies in a rhesus macaque, dog and genetically engineered mouse model.


Toxicology , Mice , Female , Animals , Dogs , Macaca mulatta , Macaca fascicularis
13.
J Pediatr Surg ; 57(11): 614-623, 2022 Nov.
Article En | MEDLINE | ID: mdl-35953340

INTRODUCTION: For children with end-stage lung disease that cannot wean from extracorporeal life support (ECLS), a wearable artificial lung would permit extubation and provide a bridge to recovery or transplantation. We evaluate the function of the novel Pediatric MLung-a low-resistance, pumpless artificial lung developed specifically for children-in healthy animal subjects. METHODS: Adolescent "mini sheep" weighing 12-20 kg underwent left thoracotomy, cannulation of the main pulmonary artery (PA; inflow) and left atrium (outflow), and connection to the MLung. RESULTS: Thirteen sheep were studied; 6 were supported for 7 days. Mean PA pressure was 23.9 ± 6.9 mmHg. MLung blood flow was 633±258 mL/min or 30.0 ± 16.0% of CO. MLung pressure drop was 4.4 ± 3.4 mmHg. Resistance was 7.2 ± 5.2 mmHg/L/min. Device outlet oxygen saturation was 99.0 ± 3.3% with inlet saturation 53.8 ± 7.3%. Oxygen delivery was 41.1 ± 18.4 mL O2/min (maximum 84.9 mL/min) or 2.8 ± 1.5 mL O2/min/kg. Platelet count significantly decreased; no platelet transfusions were required. Plasma free hemoglobin significantly increased only on day 7, at which point 2 of the animals had plasma free hemoglobin levels above 50 mg/dL. CONCLUSION: The MLung provides adequate gas exchange at appropriate blood flows for the pediatric population in a PA-to-LA configuration. Further work remains to improve the biocompatibility of the device. LEVEL OF EVIDENCE: N/A.


Artificial Organs , Extracorporeal Membrane Oxygenation , Animals , Child , Hemoglobins , Humans , Lung , Oxygen , Sheep
15.
Chemosphere ; 286(Pt 2): 131645, 2022 Jan.
Article En | MEDLINE | ID: mdl-34426127

The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. Perinatal development is a critical window for altered, lifelong health trajectory, and evidence supports the role of perinatal programming in chronic metabolic diseases. To examine the impact of diet and bisphenol A (BPA) on the developmental trajectory of NAFLD in offspring, we exposed dams from pre-gestation through lactation to a human-relevant dose of oral BPA coupled with intake of high fat Western or Mediterranean-style diets. We assessed hepatic steatosis by quantifying hepatic triglycerides (TGs) and metabolic health by measuring body weight, relative organ weights, and serum hormone levels in dams and offspring at postnatal day 10 (PND10) and 10-months of age. In dams, consumption of the Western or Mediterranean diet increased hepatic TGs 1.7-2.4-fold, independent of BPA intake. Among offspring, both perinatal diet and BPA exposure had a greater impact on metabolic outcomes than on hepatic steatosis. At PND10, serum leptin levels were elevated 2.6-4.8-fold in pups exposed to the Mediterranean diet, with a trend for sex-specific effects on body and organ weights. At 10-months, sex-specific increases in organ weight and hormone levels were observed in mice perinatally exposed to Western + BPA or Mediterranean + BPA. These findings suggest lifestage-specific interaction of perinatal exposures to experimental diets and BPA on offspring metabolic health without effects on NAFLD later in life. Importantly, alterations in dam phenotype by diet and BPA exposure appear to impact offspring health trajectory, emphasizing the need to define dam diet in assessing effects of environmental exposures on offspring health.


Non-alcoholic Fatty Liver Disease , Prenatal Exposure Delayed Effects , Animals , Benzhydryl Compounds/toxicity , Diet, High-Fat/adverse effects , Female , Male , Mice , Non-alcoholic Fatty Liver Disease/chemically induced , Phenols , Pregnancy
16.
J Thorac Cardiovasc Surg ; 164(1): 128-138, 2022 07.
Article En | MEDLINE | ID: mdl-33485659

OBJECTIVE: Cross-circulation of plasma from a paracorporeal animal allows successful ex vivo heart perfusion (EVHP) for 3 days. Little is known about the feasibility of prolonged EVHP without a paracorporeal animal. These experiments evaluated plasma exchange (PX) that infuses fresh plasma, whereas an equal amount is removed to replace paracorporeal cross-circulation. METHODS: Ten hearts were procured from 8 to 10 kg piglets and maintained with EVHP. The EVHP circuit was primed with platelet- and leukocyte-reduced blood. Plasma obtained from stored porcine blood (4°C for ≤7 days) was infused and removed with a plasma separator at 1 mL/h/g cardiac tissue (n = 5) in the PX group. Controls (n = 5) used the same EVHP without PX. Antegrade aortic perfusion was adjusted to reach physiologic coronary flow of 0.7 to 1.2 mL/min/g, normothermia (37°C), and hemoglobin ≥8 g/dL. Viability was assessed by hemodynamic metrics, metabolic assays, and histopathology. RESULTS: All PX hearts remained viable for 24 hours compared with only 1 control (P = .015). Coronary resistance was higher in the PX versus controls (1.06 ± 0.06 mm Hg/mL/min; 0.58 ± 0.02 mm Hg/mL/min [P < .05]). Lactate levels were lower in PX (2.8-4.2 mmol/L) versus controls (3.6-7.6 mmol/L) (P < .05). PX demonstrated a trend toward preservation of left ventricle systolic pressure (63.0 ± 10.9 mm Hg) versus controls (37 ± 22.0 mm Hg) (P > .05). In mixed effect models, oxygen consumption was higher with PX (P < .05). Histopathologic evaluation confirmed extensive myocardial degeneration and worse interstitial edema in controls. CONCLUSIONS: These results demonstrate that EVHP can be successfully maintained for at least 24 hours using continuous PX. This eliminates the need for a paracorporeal animal and provides an important step toward clinical application.


Heart Transplantation , Organ Preservation , Animals , Heart/physiology , Humans , Organ Preservation/methods , Perfusion/adverse effects , Perfusion/methods , Plasma Exchange , Swine
17.
Sci Rep ; 11(1): 21100, 2021 10 26.
Article En | MEDLINE | ID: mdl-34702932

The COPII component SEC24 mediates the recruitment of transmembrane cargos or cargo adaptors into newly forming COPII vesicles on the ER membrane. Mammalian genomes encode four Sec24 paralogs (Sec24a-d), with two subfamilies based on sequence homology (SEC24A/B and C/D), though little is known about their comparative functions and cargo-specificities. Complete deficiency for Sec24d results in very early embryonic lethality in mice (before the 8 cell stage), with later embryonic lethality (E7.5) observed in Sec24c null mice. To test the potential overlap in function between SEC24C/D, we employed dual recombinase mediated cassette exchange to generate a Sec24cc-d allele, in which the C-terminal 90% of SEC24C has been replaced by SEC24D coding sequence. In contrast to the embryonic lethality at E7.5 of SEC24C-deficiency, Sec24cc-d/c-d pups survive to term, though dying shortly after birth. Sec24cc-d/c-d pups are smaller in size, but exhibit no other obvious developmental abnormality by pathologic evaluation. These results suggest that tissue-specific and/or stage-specific expression of the Sec24c/d genes rather than differences in cargo export function explain the early embryonic requirements for SEC24C and SEC24D.


Embryonic Development , Genetic Complementation Test , Vesicular Transport Proteins , Animals , Mice , Mice, Transgenic , Vesicular Transport Proteins/biosynthesis , Vesicular Transport Proteins/genetics
18.
Arch Toxicol ; 95(10): 3171-3190, 2021 10.
Article En | MEDLINE | ID: mdl-34468815

Rodent alveolar/bronchiolar carcinomas (ABC) that arise either spontaneously or due to chemical exposure are similar to a subtype of lung adenocarcinomas in humans. B6C3F1/N mice and F344/NTac rats exposed to cobalt metal dust (CMD) by inhalation developed ABCs in a dose dependent manner. In CMD-exposed mice, the incidence of Kras mutations in ABCs was 67% with 80% of those being G to T transversions on codon 12 suggesting a role of oxidative stress in the pathogenesis. In vitro studies, such as DMPO (5,5-dimethyl-1-pyrroline N-oxide) immune-spin trapping assay, and dihydroethidium (DHE) fluorescence assay on A549 and BEAS-2B cells demonstrated increased oxidative stress due to cobalt exposure. In addition, significantly increased 8-oxo-dG adducts were demonstrated by immunohistochemistry in lungs from mice exposed to CMD for 90 days. Furthermore, transcriptomic analysis on ABCs arising spontaneously or due to chronic CMD-exposure demonstrated significant alterations in canonical pathways related to MAPK signaling (IL-8, ErbB, Integrin, and PAK pathway) and oxidative stress (PI3K/AKT and Melatonin pathway) in ABCs from CMD-exposed mice. Oxidative stress can stimulate PI3K/AKT and MAPK signaling pathways. Nox4 was significantly upregulated only in CMD-exposed ABCs and NOX4 activation of PI3K/AKT can lead to increased ROS levels in human cancer cells. The gene encoding Ereg was markedly up-regulated in CMD-exposed mice. Oncogenic KRAS mutations have been shown to induce EREG overexpression. Collectively, all these data suggest that oxidative stress plays a significant role in CMD-induced pulmonary carcinogenesis in rodents and these findings may also be relevant in the context of human lung cancers.


Bronchial Neoplasms/chemically induced , Cobalt/toxicity , Lung Neoplasms/chemically induced , Oxidative Stress/drug effects , A549 Cells , Adenocarcinoma, Bronchiolo-Alveolar/chemically induced , Adenocarcinoma, Bronchiolo-Alveolar/pathology , Animals , Bronchial Neoplasms/pathology , Carcinogenesis/chemically induced , Cell Line , Dose-Response Relationship, Drug , Dust , Female , Humans , Lung Neoplasms/pathology , Male , Mice , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Alveoli/pathology , Rats , Rats, Inbred F344
19.
Toxicol Pathol ; 49(8): 1326-1343, 2021 12.
Article En | MEDLINE | ID: mdl-34414826

The Society of Toxicologic Pathology (STP, https://www.toxpath.org/) was founded in North America in 1971 as a nonprofit scientific and educational association to promote the professional practice of pathology as applied to pharmaceutical and environmental safety assessment. In the ensuing 50 years, the STP has become a principal global leader in the field. Society membership has expanded to include toxicologic pathologists and allied scientists (eg, toxicologists, regulatory reviewers) from many nations. In addition to serving membership needs for professional development and networking, major STP outreach activities include production of articles and presentations designed to optimize toxicologic pathology procedures ("best practice" recommendations), communicate core principles of pathology evaluation and interpretation ("points to consider" and "opinion" pieces), and participation in international efforts to harmonize diagnostic nomenclature. The STP has evolved into an essential resource for academic, government, and industrial organizations that employ and educate toxicologic pathologists as well as use toxicologic pathology data across a range of applications from assessing product safety (therapies, foods, etc) to monitoring and maintaining environmental and occupational health. This article recapitulates the important milestones and accomplishments of the STP during its first 50 years.


Pathologists , Humans
20.
Stem Cell Reports ; 16(3): 656-665, 2021 03 09.
Article En | MEDLINE | ID: mdl-33606990

Loss-of-function mutations in the forkhead box N1 (FOXN1) gene lead to nude severe combined immunodeficiency, a rare inherited syndrome characterized by athymia, severe T cell immunodeficiency, congenital alopecia, and nail dystrophy. We recently produced FOXN1 mutant nude rabbits (NuRabbits) by using CRISPR-Cas9. Here we report the establishment and maintenance of the NuRabbit colony. NuRabbits, like nude mice, are hairless, lack thymic development, and are immunodeficient. To demonstrate the functional applications of NuRabbits in biomedical research, we show that they can successfully serve as the recipient animals in xenotransplantation experiments using human induced pluripotent stem cells or tissue-engineered blood vessels. Our work presents the NuRabbit as a new member of the immunodeficient animal model family. The relatively large size and long lifespan of NuRabbits offer unique applications in regenerative medicine, cancer research, and the study of a variety of other human conditions, including immunodeficiency.


Forkhead Transcription Factors/physiology , Induced Pluripotent Stem Cells/metabolism , Models, Animal , T-Lymphocytes/metabolism , Teratoma/metabolism , Animals , Animals, Genetically Modified/physiology , Blood Vessel Prosthesis , Humans , Mice , Mice, Nude , Mutation , Rabbits , Severe Combined Immunodeficiency/genetics , Transplantation, Heterologous
...