Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 17515, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060808

RESUMEN

Deep-sea sponges create hotspots of biodiversity and biological activity in the otherwise barren deep-sea. However, it remains elusive how sponge hosts and their microbial symbionts acquire and process food in these food-limited environments. Therefore, we traced the processing (i.e. assimilation and respiration) of 13C- and 15N-enriched dissolved organic matter (DOM) and bacteria by three dominant North Atlantic deep-sea sponges: the high microbial abundance (HMA) demosponge Geodia barretti, the low microbial abundance (LMA) demosponge Hymedesmia paupertas, and the LMA hexactinellid Vazella pourtalesii. We also assessed the assimilation of both food sources into sponge- and bacteria-specific phospholipid-derived fatty acid (PLFA) biomarkers. All sponges were capable of assimilating DOM as well as bacteria. However, processing of the two food sources differed considerably between the tested species: the DOM assimilation-to-respiration efficiency was highest for the HMA sponge, yet uptake rates were 4-5 times lower compared to LMA sponges. In contrast, bacteria were assimilated most efficiently and at the highest rate by the hexactinellid compared to the demosponges. Our results indicate that phylogeny and functional traits (e.g., abundance of microbial symbionts, morphology) influence food preferences and diet composition of sponges, which further helps to understand their role as key ecosystem engineers of deep-sea habitats.


Asunto(s)
Bacterias/metabolismo , Biodiversidad , Poríferos/metabolismo , Poríferos/microbiología , Agua de Mar/microbiología , Simbiosis , Animales , Bacterias/genética , Biomarcadores , Isótopos de Carbono , ADN Bacteriano , Ácidos Grasos/química , Microbiota , Isótopos de Nitrógeno , Material Particulado , Fosfolípidos/química , Filogenia , Análisis de Secuencia de ADN
2.
Oecologia ; 192(1): 201-212, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31802199

RESUMEN

Coastal ecosystems are often formed through two-way interactions between plants and their physical landscape. By expanding clonally, landscape-forming plants can colonize bare unmodified environments and stimulate vegetation-landform feedback interactions. Yet, to what degree these plants rely on clonal integration for overcoming physical stress during biogeomorphological succession remains unknown. Here, we investigated the importance of clonal integration and resource availability on the resilience of two European beach grasses (i.e. Elytrigia juncea and Ammophila arenaria) over a natural biogeomorphic dune gradient from beach (unmodified system) to foredune (biologically modified system). We found plant resilience, as measured by its ability to recover and expand following disturbance (i.e. plant clipping), to be independent on the presence of rhizomal connections between plant parts. Instead, resource availability over the gradient largely determined plant resilience. The pioneer species, Elytrigia, demonstrated a high resilience to physical stress, independent of its position on the biogeomorphic gradient (beach or embryonic dune). In contrast, the later successional species (Ammophila) proved to be highly resilient on the lower end of its distribution (embryonic dune), but it did not fully recover on the foredunes, most likely as a result of nutrient deprivation. We argue that in homogenously resource-poor environments as our beach system, overall resource availability, instead of translocation through a clonal network, determines the resilience of plant species. Hence, the formation of high coastal dunes may increase the resistance of beach grasses to the physical stresses of coastal flooding, but the reduced marine nutrient input may negatively affect the resilience of plants.


Asunto(s)
Ecosistema , Poaceae , Animales , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA