Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 42(3): e112100, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36545802

RESUMEN

All multicellular life relies on differential gene expression, determined by regulatory DNA elements and DNA-binding transcription factors that mediate activation and repression via cofactor recruitment. While activators have been extensively characterized, repressors are less well studied: the identities and properties of their repressive domains (RDs) are typically unknown and the specific co-repressors (CoRs) they recruit have not been determined. Here, we develop a high-throughput, next-generation sequencing-based screening method, repressive-domain (RD)-seq, to systematically identify RDs in complex DNA-fragment libraries. Screening more than 200,000 fragments covering the coding sequences of all transcription-related proteins in Drosophila melanogaster, we identify 195 RDs in known repressors and in proteins not previously associated with repression. Many RDs contain recurrent short peptide motifs, which are conserved between fly and human and are required for RD function, as demonstrated by motif mutagenesis. Moreover, we show that RDs that contain one of five distinct repressive motifs interact with and depend on different CoRs, such as Groucho, CtBP, Sin3A, or Smrter. These findings advance our understanding of repressors, their sequences, and the functional impact of sequence-altering mutations and should provide a valuable resource for further studies.


Asunto(s)
Proteínas de Drosophila , Factores de Transcripción , Animales , Humanos , Factores de Transcripción/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Co-Represoras/metabolismo , ADN/metabolismo
2.
Life Sci Alliance ; 4(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33310759

RESUMEN

Malignant transformation depends on genetic and epigenetic events that result in a burst of deregulated gene expression and chromatin changes. To dissect the sequence of events in this process, we used a T-cell-specific lymphoma model based on the human oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) translocation. We find that transformation of T cells shifts thymic cell populations to an undifferentiated immunophenotype, which occurs only after a period of latency, accompanied by induction of the MYC-NOTCH1 axis and deregulation of key epigenetic enzymes. We discover aberrant DNA methylation patterns, overlapping with regulatory regions, plus a high degree of epigenetic heterogeneity between individual tumors. In addition, ALK-positive tumors show a loss of associated methylation patterns of neighboring CpG sites. Notably, deletion of the maintenance DNA methyltransferase DNMT1 completely abrogates lymphomagenesis in this model, despite oncogenic signaling through NPM-ALK, suggesting that faithful maintenance of tumor-specific methylation through DNMT1 is essential for sustained proliferation and tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Epigénesis Genética , Linfoma/etiología , Linfoma/metabolismo , Proteínas Tirosina Quinasas/genética , Animales , Biomarcadores de Tumor , Biología Computacional/métodos , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Epigenómica , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Inmunohistoquímica , Inmunofenotipificación , Linfoma/tratamiento farmacológico , Linfoma/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Tirosina Quinasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cell Rep ; 29(7): 2105-2119.e4, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31722221

RESUMEN

Temporal control over protein phosphorylation and dephosphorylation is crucial for accurate chromosome segregation and for completion of the cell division cycle during exit from mitosis. In budding yeast, the Cdc14 phosphatase is thought to be a major regulator at this time, while in higher eukaryotes PP2A phosphatases take a dominant role. Here, we use time-resolved phosphoproteome analysis in budding yeast to evaluate the respective contributions of Cdc14, PP2ACdc55, and PP2ARts1. This reveals an overlapping requirement for all three phosphatases during mitotic progression. Our time-resolved phosphoproteome resource reveals how Cdc14 instructs the sequential pattern of phosphorylation changes, in part through preferential recognition of serine-based cyclin-dependent kinase (Cdk) substrates. PP2ACdc55 and PP2ARts1 in turn exhibit a broad substrate spectrum with some selectivity for phosphothreonines and a role for PP2ARts1 in sustaining Aurora kinase activity. These results illustrate synergy and coordination between phosphatases as they orchestrate phosphoproteome dynamics during mitotic progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis , Fosfoproteínas/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Fosfoproteínas/genética , Proteína Fosfatasa 2/genética , Proteínas Tirosina Fosfatasas/genética , Proteoma/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...