Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Radiother Oncol ; 194: 110184, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38453055

RESUMEN

BACKGROUND AND PURPOSE: Safe reirradiation relies on assessment of cumulative doses to organs at risk (OARs) across multiple treatments. Different clinical pathways can result in inconsistent estimates. Here, we quantified the consistency of cumulative dose to OARs across multi-centre clinical pathways. MATERIAL AND METHODS: We provided DICOM planning CT, structures and doses for two reirradiation cases: head & neck (HN) and lung. Participants followed their standard pathway to assess the cumulative physical and EQD2 doses (with provided α/ß values), and submitted DVH metrics and a description of their pathways. Participants could also submit physical dose distributions from Course 1 mapped onto the CT of Course 2 using their best available tools. To assess isolated impact of image registrations, a single observer accumulated each submitted spatially mapped physical dose for every participating centre. RESULTS: Cumulative dose assessment was performed by 24 participants. Pathways included rigid (n = 15), or deformable (n = 5) image registration-based 3D dose summation, visual inspection of isodose line contours (n = 1), or summation of dose metrics extracted from each course (n = 3). Largest variations were observed in near-maximum cumulative doses (25.4 - 41.8 Gy for HN, 2.4 - 33.8 Gy for lung OARs), with lower variations in volume/dose metrics to large organs. A standardised process involving spatial mapping of the first course dose to the second course CT followed by summation improved consistency for most near-maximum dose metrics in both cases. CONCLUSION: Large variations highlight the uncertainty in reporting cumulative doses in reirradiation scenarios, with implications for outcome analysis and understanding of published doses. Using a standardised workflow potentially including spatially mapped doses improves consistency in determination of accumulated dose in reirradiation scenarios.


Asunto(s)
Neoplasias de Cabeza y Cuello , Neoplasias Pulmonares , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Reirradiación , Humanos , Reirradiación/métodos , Neoplasias de Cabeza y Cuello/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada por Rayos X
2.
Clin Transl Radiat Oncol ; 45: 100737, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38317680

RESUMEN

Background: The role of early treatment response for patients with locally advanced non-small cell lung cancer (LA-NSCLC) treated with concurrent chemo-radiotherapy (cCRT) is unclear. The study aims to investigate the predictive value of response to induction chemotherapy (iCX) and the correlation with pattern of failure (PoF). Materials and methods: Patients with LA-NSCLC treated with cCRT were included for analyses (n = 276). Target delineations were registered from radiotherapy planning PET/CT to diagnostic PET/CT, in between which patients received iCX. Volume, sphericity, and SUVpeak were extracted from each scan. First site of failure was categorised as loco-regional (LR), distant (DM), or simultaneous LR+M (LR+M). Fine and Gray models for PoF were performed: a baseline model (including performance status (PS), stage, and histology), an image model for squamous cell carcinoma (SCC), and an image model for non-SCC. Parameters included PS, volume (VOL) of tumour, VOL of lymph nodes, ΔVOL, sphericity, SUVpeak, ΔSUVpeak, and oligometastatic disease. Results: Median follow-up was 7.6 years. SCC had higher sub-distribution hazard ratio (sHR) for LRF (sHR = 2.771 [1.577:4.87], p < 0.01) and decreased sHR for DM (sHR = 0.247 [0.125:0.485], p  <  0.01). For both image models, high diagnostic SUVpeak increased risk of LRF (sHR = 1.059 [1.05:1.106], p < 0.01 for SCC, sHR = 1.12 [1.03:1.21], p < 0.01 for non-SCC). Patients with SCC and less decrease in VOL had higher sHR for DM (sHR = 1.025[1.001:1.048] pr. % increase, p = 0.038). Conclusion: Poor response in disease volume was correlated with higher sHR of DM for SCC, no other clear correlation of response and PoF was observed. Histology significantly correlated with PoF with SCC prone to LRF and non-SCC prone to DM as first site of failure. High SUVpeak at diagnosis increased the risk of LRF for both histologies.

3.
Radiother Oncol ; 191: 110065, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122851

RESUMEN

BACKGROUND AND PURPOSE: Irradiation of the heart in thoracic cancers raises toxicity concerns. For accurate dose estimation, automated heart and substructure segmentation is potentially useful. In this study, a hybrid automatic segmentation is developed. The accuracy of delineation and dose predictions were evaluated, testing the method's potential within heart toxicity studies. MATERIALS AND METHODS: The hybrid segmentation method delineated the heart, four chambers, three large vessels, and the coronary arteries. The method consisted of a nnU-net heart segmentation and partly atlas- and model-based segmentation of the substructures. The nnU-net training and atlas segmentation was based on lung cancer patients and was validated against a national consensus dataset of 12 patients with breast cancer. The accuracy of dose predictions between manual and auto-segmented heart and substructures was evaluated by transferring the dose distribution of 240 previously treated lung cancer patients to the consensus data set. RESULTS: The hybrid auto-segmentation method performed well with a heart dice similarity coefficient (DSC) of 0.95, with no statistically significant difference between the automatic and manual delineations. The DSC for the chambers varied from 0.78-0.86 for the automatic segmentation and was comparable with the inter-observer variability. Most importantly, the automatic segmentation was as precise as the clinical experts in predicting the dose distribution to the heart and all substructures. CONCLUSION: The hybrid segmentation method performed well in delineating the heart and substructures. The prediction of dose by the automatic segmentation was aligned with the manual delineations, enabling measurement of heart and substructure dose in large cohorts. The delineation algorithm will be available for download.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Humanos , Femenino , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Corazón/diagnóstico por imagen , Corazón/efectos de la radiación , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
4.
Acta Oncol ; 62(11): 1426-1432, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37796133

RESUMEN

BACKGROUND: Adenocarcinoma (AC) and squamous cell carcinoma (SCC) are the most frequent histological subtypes of non-small cell lung cancer (NSCLC). The aim of this study was to investigate how patients with AC and SCC benefit from image-guided adaptive radiotherapy (ART) with tumour match. MATERIAL AND METHODS: Consecutive patients diagnosed with AC or SCC of the lung treated with definitive chemo-radiotherapy before and after the implementation of ART and tumour match were retrospectively included for analyses. Data collection included baseline patient and treatment characteristics in addition to clinical data on radiation pneumonitis (RP), failure, and survival. Patients were divided into four categories based on their histology and treatment before (n = 173 [89 AC and 84 SCC]) and after implementation of ART (n = 240 [141 AC and 99 SCC]). RESULTS: Median follow-up was 5.7 years for AC and 6.3 years for SCC. Mean lung dose decreased for both histologies with ART, whereas mean heart dose only decreased for patients with AC. Incidences of grade 3 and 5 RP decreased for both histologies with ART. Loco-regional failure (LRF) rates decreased significantly for patients with SCC after ART (p = .04), no significant difference was observed for AC. Overall survival (OS) increased significantly for SCC after ART (p < .01): the 2-year OS increased from 31.0% (95% confidence interval [CI] [22.5-42.6]) to 54.5% (95% CI [45.6-65.3]). No significant effect on OS was observed for patients with AC. CONCLUSION: ART and tumour match in the radiotherapeutic treatment of patients with locally advanced NSCLC primarily led to decreased LRF and improved OS for patients with SCC.


Asunto(s)
Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios Retrospectivos , Neoplasias Pulmonares/patología , Carcinoma de Células Escamosas/patología , Adenocarcinoma/patología , Estadificación de Neoplasias
5.
Acta Oncol ; 62(10): 1161-1168, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37850659

RESUMEN

BACKGROUND: Previously, many radiotherapy (RT) trials were based on a few selected dose measures. Many research questions, however, rely on access to the complete dose information. To support such access, a national RT plan database was created. The system focuses on data security, ease of use, and re-use of data. This article reports on the development and structure, and the functionality and experience of this national database. METHODS AND MATERIALS: A system based on the DICOM-RT standard, DcmCollab, was implemented with direct connections to all Danish RT centres. Data is segregated into any number of collaboration projects. User access to the system is provided through a web interface. The database has a finely defined access permission model to support legal requirements. RESULTS: Currently, data for more than 14,000 patients have been submitted to the system, and more than 50 research projects are registered. The system is used for data collection, trial quality assurance, and audit data set generation.Users reported that the process of submitting data, waiting for it to be processed, and then manually attaching it to a project was resource intensive. This was accommodated with the introduction of triggering features, eliminating much of the need for users to manage data manually. Many other features, including structure name mapping, RT plan viewer, and the Audit Tool were developed based on user input. CONCLUSION: The DcmCollab system has provided an efficient means to collect and access complete datasets for multi-centre RT research. This stands in contrast with previous methods of collecting RT data in multi-centre settings, where only singular data points were manually reported. To accommodate the evolving legal environment, DcmCollab has been defined as a 'data processor', meaning that it is a tool for other research projects to use rather than a research project in and of itself.


Asunto(s)
Oncología por Radiación , Radioterapia , Humanos , Ensayos Clínicos como Asunto
6.
Radiother Oncol ; 188: 109887, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37659663

RESUMEN

PURPOSE/OBJECTIVE: Deep-inspiration breath-hold (DIBH) during radiotherapy may reduce dose to the lungs and heart compared to treatment in free breathing. However, intra-fractional target shifts between several breath-holds may decrease target coverage. We compared target shifts between four DIBHs at the planning-CT session with those measured on CBCT-scans obtained pre- and post-DIBH treatments. MATERIAL/METHODS: Twenty-nine lung cancer and nine lymphoma patients were treated in DIBH. An external gating block was used as surrogate for the DIBH-level with a window of 2 mm. Four DIBH CT-scans were acquired: one for planning (CTDIBH3) and three additional (CTDIBH1,2,4) to assess the intra-DIBH target shifts at scanning by registration to CTDIBH3. During treatment, pre-treatment (CBCTpre) and post-treatment (CBCTpost) scans were acquired. For each pair of CBCTpre/post, the target intra-DIBH shift was determined. For lung cancer, tumour (GTV-Tlung) and lymph nodes (GTV-Nlung) were analysed separately. Group mean (GM), systematic and random errors, and GM for the absolute maximum shifts (GMmax) were calculated for the shifts between CTDIBH1,2,3,4 and between CBCTpre/post. RESULTS: For GTV-Tlung, GMmax was larger at CBCT than CT in all directions. GMmax in cranio-caudal direction was 3.3 mm (CT)and 6.1 mm (CBCT). The standard deviations of the shifts in the left-right and cranio-caudal directions were larger at CBCT than CT. For GTV-Nlung and CTVlymphoma, no difference was found in GMmax or SD. CONCLUSION: Intra-DIBH shifts at planning-CT session are generally smaller than intra-DIBH shifts observed at CBCTpre/post and therefore underestimate the intra-fractional DIBH uncertainty during treatment. Lung tumours show larger intra-fractional variations than lymph nodes and lymphoma targets.

7.
Int J Radiat Oncol Biol Phys ; 117(5): 1222-1231, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423292

RESUMEN

PURPOSE: Stereotactic body radiation therapy for tumors near the central airways implies high-grade toxic effects, as concluded from the HILUS trial. However, the small sample size and relatively few events limited the statistical power of the study. We therefore pooled data from the prospective HILUS trial with retrospective data from patients in the Nordic countries treated outside the prospective study to evaluate toxicity and risk factors for high-grade toxic effects. METHODS AND MATERIALS: All patients were treated with 56 Gy in 8 fractions. Tumors within 2 cm of the trachea, the mainstem bronchi, the intermediate bronchus, or the lobar bronchi were included. The primary endpoint was toxicity, and the secondary endpoints were local control and overall survival. Clinical and dosimetric risk factors were analyzed for treatment-related fatal toxicity in univariable and multivariable Cox regression analyses. RESULTS: Of 230 patients evaluated, grade 5 toxicity developed in 30 patients (13%), of whom 20 patients had fatal bronchopulmonary bleeding. The multivariable analysis revealed tumor compression of the tracheobronchial tree and maximum dose to the mainstem or intermediate bronchus as significant risk factors for grade 5 bleeding and grade 5 toxicity. The 3-year local control and overall survival rates were 84% (95% CI, 80%-90%) and 40% (95% CI, 34%-47%), respectively. CONCLUSIONS: Tumor compression of the tracheobronchial tree and high maximum dose to the mainstem or intermediate bronchus increase the risk of fatal toxicity after stereotactic body radiation therapy in 8 fractions for central lung tumors. Similar dose constraints should be applied to the intermediate bronchus as to the mainstem bronchi.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Neoplasias Pulmonares/patología , Bronquios/efectos de la radiación , Factores de Riesgo , Radiocirugia/efectos adversos , Radiocirugia/métodos
8.
Radiother Oncol ; 185: 109719, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37257588

RESUMEN

BACKGROUND AND PURPOSE: Coronary artery calcium score (CACs) is an excellent marker for survival in non-cancer patients, but its role in locally advanced non-small cell lung cancer (LA-NSCLC) patients remains uncertain. In this study, we hypothesize that CACs is a prognostic marker for survival in a competing risk analysis in LA-NSCLC patients treated with definitive radiotherapy. MATERIALS AND METHODS: We included 644 patients with LA-NSCLC treated in 2014-2015 in Denmark. Baseline patient characteristics were derived from the Danish Lung Cancer Registry. Radiotherapy planning CT scans were used for manual CACs measurements, and the patients were divided into four groups, CACs 0, 1-99, 100-399, and ≥400. A multivariable Cox model utilizing bootstrapping for cross-validation modeled overall survival (OS). RESULTS: The median follow-up time was seven years, and the median OS was 26 months (95% CI 24-29). Within each CAC group 0, 1-99, 100-399, and ≥400 were 172, 182, 143, and 147 patients, respectively. In the univariable analysis, the survival decreased with increasing CACs. However, after adjustment for age, PS, radiotherapy dose, and logarithmic GTV, CACs did not have a statistically significant impact on OS with hazard ratios of 1.04 (95% CI 0.85-1.28), 1.11 (95%CI 0.89-1.43), and 1.16 (95%CI 0.92-1.47) for CACs 1-99, CACs 100-399 and ≥400, respectively. Elevated CACs was observed in 73 % of the patients suggesting a high risk of cardiac comorbidity before radiotherapy. CONCLUSION: CACs did not add prognostic information to our population's classical risk factors, such as tumor volume, performance status, and age; the lung cancer has the highest priority despite the risk of baseline cardiac comorbidity.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Enfermedad de la Arteria Coronaria , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Calcio , Vasos Coronarios/patología , Factores de Riesgo , Estudios Retrospectivos
9.
Radiother Oncol ; 180: 109453, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642388

RESUMEN

BACKGROUND: Coronary artery disease (CAD) has been reported as a late effect following radiation therapy (RT) of early breast cancer (BC). This study aims to report individual RT doses to the heart and cardiac substructures in patients treated with CT-based RT and to investigate if a dose-response relationship between RT dose and CAD exists using modern radiation therapy techniques. METHODS: Patients registered in the Danish Breast Cancer Group database from 2005 to 2016 with CT-based RT were eligible. Among 15,765 patients, the study included 204 with CAD after irradiation (cases) and 408 matched controls. Individual planning CTs were retrieved, the heart and cardiac substructures were delineated and dose-volume parameters were extracted. RESULTS: The median follow-up time was 7.3 years (IQR: 4.6-10.0). Among cases, the median mean heart dose was 1.6 Gy (IQR 0.2-6.1) and 0.8 Gy (0.1-2.9) for left-sided and right-sided patients, respectively (p < 0.001). The highest RT doses were observed in the left ventricle and left anterior descending coronary artery for left-sided RT and in the right atrium and the right coronary artery after right-sided RT. The highest left-minus-right dose-difference was located in the distal part of the left anterior descending coronary artery where also the highest left-versus-right ratio of events was observed. However, no significant difference in the distribution of CAD was observed by laterality. Furthermore, no significant differences in the dose-volume parameters were observed for cases versus controls. CONCLUSIONS: CAD tended to occur in the part of the heart with the highest left-minus- right dose difference, however, no significant risk of CAD was observed at 7 years' median follow-up.


Asunto(s)
Neoplasias de la Mama , Enfermedad de la Arteria Coronaria , Humanos , Femenino , Enfermedad de la Arteria Coronaria/etiología , Neoplasias de la Mama/radioterapia , Corazón/efectos de la radiación , Dosificación Radioterapéutica , Dosis de Radiación
10.
Radiother Oncol ; 182: 109494, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36708923

RESUMEN

BACKGROUND AND PURPOSE: The Global Clinical Trials RTQA Harmonization Group (GHG) set out to evaluate and prioritize clinical trial quality assurance. METHODS: The GHG compiled a list of radiotherapy quality assurance (QA) tests performed for proton and photon therapy clinical trials. These tests were compared between modalities to assess whether there was a need for different types of assessments per modality. A failure modes and effects analysis (FMEA) was performed to assess the risk of each QA failure. RESULTS: The risk analysis showed that proton and photon therapy shared four out of five of their highest-risk failures (end-to-end anthropomorphic phantom test, phantom tests using respiratory motion, pre-treatment patient plan review of contouring/outlining, and on-treatment/post-treatment patient plan review of dosimetric coverage). While similar trends were observed, proton therapy had higher risk failures, driven by higher severity scores. A sub-analysis of occurrence × severity scores identified high-risk scores to prioritize for improvements in RTQA detectability. A novel severity scaler was introduced to account for the number of patients affected by each failure. This scaler did not substantially alter the ranking of tests, but it elevated the QA program evaluation to the top 20th percentile. This is the first FMEA performed for clinical trial quality assurance. CONCLUSION: The identification of high-risk errors associated with clinical trials is valuable to prioritize and reduce errors in radiotherapy and improve the quality of trial data and outcomes, and can be applied to optimize clinical radiotherapy QA.


Asunto(s)
Análisis de Modo y Efecto de Fallas en la Atención de la Salud , Protones , Humanos , Fotones/uso terapéutico , Radiometría , Medición de Riesgo
11.
Acta Oncol ; 61(8): 994-1003, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35775236

RESUMEN

BACKGROUND: The aim of this study was to investigate the effect of patient positioning based on either bone or soft-tissue matching for PT in oesophageal cancer and its impact on plan adaptation. MATERIALS AND METHODS: Two retrospective patient cohorts treated with radiotherapy were included in the study. Cohort A consisted of 26 consecutive patients with a planning 4DCT scan (CT1) and a surveillance 4DCT scan (CT2) at fraction ten. Cohort B consisted of 17 patients selected based on large anatomical changes identified during treatment resulting in a rescan (CT2). Mean dose to the iCTV (sum of the CTVs in all respiratory phases) was 50.4 Gy (RBE) in 28 fractions or 41.4 Gy (RBE) in 23 fractions. A nominal pencil beam scanning plan was created using two posterior beams and robust optimization (5 mm setup, 3.5% range). For each patient, two rigid registrations were made between average (avg) CT1 and CT2: a match on the vertebral column (bone match) and a match on the iCTV (soft-tissue match). Robustness towards setup (5 mm) and range (3.5%) errors was evaluated at CT2. Robustness towards respiration was evaluated by recalculation of the plan on all phases of the CT2 scan. Dose coverage <96% would trigger adaptation. The statistical significance (p-value <0.05) between dose coverage for the two registration methods was assessed using the Wilcoxon signed rank test. RESULTS: All plans fulfilled V95%iCTV>99% for the nominal plan and V95%iCTV>97% for all respiratory phases and robustness scenarios at CT1. In two (8%) and three (18%) patients, V95%iCTV<96% on CT2 for Cohort A and B, respectively when bone match was used. For soft-tissue match, V95%iCTV >96% for all patients. V95%iCTV was significantly higher (p-value = 0.0001) for soft-tissue match than bone match. CONCLUSION: Anatomical changes during the treatment course led to target dose deterioration and a need for plan adaptation when using a bone match.


Asunto(s)
Neoplasias Esofágicas , Terapia de Protones , Neoplasias Esofágicas/radioterapia , Humanos , Terapia de Protones/métodos , Dosificación Radioterapéutica , Estudios Retrospectivos
12.
Radiother Oncol ; 172: 32-41, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35513132

RESUMEN

PURPOSE: To compare dose distributions and robustness in treatment plans from eight European centres in preparation for the European randomized phase-III PROTECT-trial investigating the effect of proton therapy (PT) versus photon therapy (XT) for oesophageal cancer. MATERIALS AND METHODS: All centres optimized one PT and one XT nominal plan using delineated 4DCT scans for four patients receiving 50.4 Gy (RBE) in 28 fractions. Target volume receiving 95% of prescribed dose (V95%iCTVtotal) should be >99%. Robustness towards setup, range, and respiration was evaluated. The plans were recalculated on a surveillance 4DCT (sCT) acquired at fraction ten and robustness evaluation was performed to evaluate the effect of respiration and inter-fractional anatomical changes. RESULTS: All PT and XT plans complied with V95%iCTVtotal >99% for the nominal plan and V95%iCTVtotal >97% for all respiratory and robustness scenarios. Lung and heart dose varied considerably between centres for both modalities. The difference in mean lung dose and mean heart dose between each pair of XT and PT plans was in median [range] 4.8 Gy [1.1;7.6] and 8.4 Gy [1.9;24.5], respectively. Patients B and C showed large inter-fractional anatomical changes on sCT. For patient B, the minimum V95%iCTVtotal in the worst-case robustness scenario was 45% and 94% for XT and PT, respectively. For patient C, the minimum V95%iCTVtotal was 57% and 72% for XT and PT, respectively. Patient A and D showed minor inter-fractional changes and the minimum V95%iCTVtotal was >85%. CONCLUSION: Large variability in dose to the lungs and heart was observed for both modalities. Inter-fractional anatomical changes led to larger target dose deterioration for XT than PT plans.


Asunto(s)
Neoplasias Esofágicas , Terapia de Protones , Radioterapia de Intensidad Modulada , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/radioterapia , Humanos , Terapia de Protones/métodos , Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
13.
Radiother Oncol ; 168: 234-240, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35121030

RESUMEN

INTRODUCTION: Tumor match and adaptive radiotherapy based on on-treatment imaging increases the precision of RT. This allows a reduction of treatment volume and, consequently, of the dose to organs at risk. We investigate the clinical benefits of tumor match and adaptive radiotherapy for a cohort of non-small cell lung cancer patients (NSCLC). METHODS: In 2013, tumor match and adaptive radiotherapy based on daily cone-beam CT scans was introduced to ensure adaption of the radiotherapy treatment plan for all patients with significant anatomical changes during radiotherapy. Before 2013, the daily cone-beam CT scans were matched on the vertebra and anatomical changes were not evaluated systematically. To estimate the effect of tumor match and adaptive radiotherapy, 439 consecutive NSCLC patients treated with definitive chemo-radiotherapy (50-66 Gy/25-33 fractions, 2010-2018) were investigated retrospectively. They were split in two groups, pre-ART (before tumor match and adaptive radiotherapy, 184 patients), and ART (after tumor match and adaptive radiotherapy, 255 patients) and compared with respect to clinical, treatment-specific and dosimetric variables (χ2 tests, Mann Whitney U tests), progression, survival and radiation pneumonits (CTCAEv3). Progression-free and overall survival as well as radiation pneumonitis were compared with log-rank tests. Hazard ratios were estimated from Cox proportional hazard regression. RESULTS: No significant differences in stage (p = 0.36), histology (p = 0.35), PS (p = 0.12) and GTV volumes (p = 0.24) were observed. Concomitant chemotherapy was administered more frequently in the ART group (78%) compared to preART (64%), p < 0.001. Median[range] PTV volumes decreased from 456 [71;1262] cm3 (preART) to 270 [31;1166] cm3 (ART), p < 0.001, thereby significantly reducing mean doses to lungs (median, preART 16.4 [1.9;24.7] Gy, ART 12.1 [1.7;19.4] Gy, p < 0.001) and heart (median, preART 8.0 [0.1;32.1] Gy, ART 4.4 [0.1;33.9] Gy, p < 0.001). The incidence of RP at nine months decreased significantly with ART (50% to 20% for symptomatic RP (≥G2), 21% to 7% for severe RP (≥G3), 6% to 0.4% for lethal RP (G5), all p < 0.001). The two-year progression free survival increased from 22% (preART) to 30% (ART), while the overall survival increased from 43% (preART) to 56% (ART). The median overall survival time increased from 20 (preART) to 28 months (ART). CONCLUSION: Tumor match and adaptive radiotherapy significantly decreased radiation pneumonitis, while maintaining loco-regional control. Further, we observed a significantly improved progression-free and overall survival.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Radioterapia de Intensidad Modulada , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos
14.
Acta Oncol ; 61(2): 247-254, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34427497

RESUMEN

BACKGROUND: This study aimed to develop and validate an automatic multi-atlas segmentation method for delineating the heart and substructures in breast cancer radiation therapy (RT). MATERIAL AND METHODS: The atlas database consisted of non-contrast-enhanced planning CT scans from 42 breast cancer patients, each with one manual delineation of the heart and 22 cardiac substructures. Half of the patients were scanned during free-breathing, the rest were scanned during a deep inspiration breath-hold. The auto-segmentation was developed in the MIM software system and validated geometrically and dosimetrically in two steps: The first validation in a small dataset to ensure consistency of the atlas. This was succeeded by a final test where multiple manual delineations in CT scans of 12 breast cancer patients were compared to the auto-segmentation. For geometric evaluation, the dice similarity coefficient (DSC) and the mean surface distance (MSD) were used. For dosimetric evaluation, the RT doses to each substructure in the manual and the automatic delineations were compared. RESULTS: In the first validation, a high geometric and dosimetric performance between the automatic and manual delineations was observed for all substructures. The final test confirmed a high agreement between the automatic and manual delineations for the heart (DSC = 0.94) and the cardiac chambers (DSC: 0.75-0.86). The difference in MSD between the automatic and manual delineations was low (<4 mm) in all structures. Finally, a high correlation between mean RT doses for the automatic and the manual delineations was observed for the heart and substructures. CONCLUSIONS: An automatic segmentation tool for delineation of the heart and substructures in breast cancer RT was developed and validated with a high correlation between the automatic and manual delineations. The atlas is pivotal for large-scale evaluations of radiation-associated heart disease.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/radioterapia , Femenino , Corazón/diagnóstico por imagen , Humanos , Órganos en Riesgo , Radiometría , Planificación de la Radioterapia Asistida por Computador
15.
BMC Cancer ; 21(1): 940, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34418994

RESUMEN

BACKGROUND: Radiation therapy (RT) plays a key role in curative-intent treatment for locally advanced lung cancer. Radiation induced pulmonary toxicity can be significant for some patients and becomes a limiting factor for radiation dose, suitability for treatment, as well as post treatment quality of life and suitability for the newly introduced adjuvant immunotherapy. Modern RT techniques aim to minimise the radiation dose to the lungs, without accounting for regional distribution of lung function. Many lung cancer patients have significant regional differences in pulmonary function due to smoking and chronic lung co-morbidity. Even though reduction of dose to functional lung has shown to be feasible, the method of preferential functional lung avoidance has not been investigated in a randomised clinical trial. METHODS: In this study, single photon emission computed tomography (SPECT/CT) imaging technique is used for functional lung definition, in conjunction with advanced radiation dose delivery method in randomised, double-blind trial. The study aims to assess the impact of functional lung avoidance technique on pulmonary toxicity and quality of life in patients receiving chemo-RT for lung cancer. Eligibility criteria are biopsy verified lung cancer, scheduled to receive (chemo)-RT with curative intent. Every patient will undergo a pre-treatment perfusion SPECT/CT to identify functional lung. At radiation dose planning, two plans will be produced for all patients on trial. Standard reference plan, without the use of SPECT imaging data, and functional avoidance plan, will be optimised to reduce the dose to functional lung within the predefined constraints. Both plans will be clinically approved. Patients will then be randomised in a 2:1 ratio to be treated according to either the functional avoidance or the standard plan. This study aims to accrue a total of 200 patients within 3 years. The primary endpoint is symptomatic radiation-induced lung toxicity, measured serially 1-12 months after RT. Secondary endpoints include: a quality of life and patient reported lung symptoms assessment, overall survival, progression-free survival, and loco-regional disease control. DISCUSSION: ASPECT trial will investigate functional avoidance method of radiation delivery in clinical practice, and will establish toxicity outcomes for patients with lung cancer undergoing curative chemo-RT. TRIAL REGISTRATION: Clinicaltrials.gov Identifier: NCT04676828 . Registered 1 December 2020.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/radioterapia , Órganos en Riesgo/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Ensayos Clínicos Fase II como Asunto , Método Doble Ciego , Estudios de Seguimiento , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Estudios Multicéntricos como Asunto , Pronóstico , Ensayos Clínicos Controlados Aleatorios como Asunto
16.
Acta Oncol ; 60(10): 1275-1282, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34224288

RESUMEN

BACKGROUND: Visual inspections of anatomical changes observed on daily cone-beam CT (CBCT) images are often used as triggers for radiotherapy plan adaptation to avoid unacceptable dose levels to the target or OARs. Direct CBCT dose calculations would improve the ability to adapt only those plans where dosimetric changes are observed. This study investigates the accuracy of dose calculations on CBCTs. MATERIALS AND METHODS: Calibration curves were obtained for CBCT imagers at nine identical accelerators. CBCT scans of a phantom with different density inserts were recorded for two scan modes (Head-Neck and Pelvis) and mean calibration curves were calculated. Subsequently, CBCT scans of the phantom with six different density inserts were recorded, the dose distributions on the CBCTs were calculated and compared to dose on the planning CT (pCT). The uncertainty was quantified by the dosimetric difference between the pCT and the CBCT. The two mean calibration curves were used to calculate the daily delivered CBCT dose for ten Head-Neck-, eleven Lung-, and ten pelvic patients. Additional patient calculations were performed using low-HU empirically corrected calibration curves. Patient doses were compared on target coverage and mean dose, and D1cc for OARs. RESULTS: The dose differences between pCT and CBCT for phantom data were small for all DVH parameters, with mean deviations below ±0.6% for both CBCT modes. For patient data, it was found that low-HU corrected calibration curves performed the best. The mean deviations for the mean dose and coverage of the target were 0.2%±0.7% and 0.1%±0.6%, across all patient groups. CONCLUSION: Dose calculation on CBCT images results in target coverage and mean dose with an accuracy of the order of 1%, which makes this acceptable for clinical use. The CBCT mode specific calibration curves can be used at all identical imaging devices and for all patient groups.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Radioterapia de Intensidad Modulada , Calibración , Humanos , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
17.
Int J Radiat Oncol Biol Phys ; 111(2): 539-548, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33974885

RESUMEN

PURPOSE: Proton therapy of esophageal cancer is superior to photon radiation therapy in terms of normal tissue sparing. However, respiratory motion and anatomical changes may compromise target dose coverage owing to density changes, geometric misses, and interplay effects. Here we investigate the combined effect on clinical target volume (CTV) coverage and compare proton therapy with intensity modulated radiation therapy (IMRT). METHODS AND MATERIALS: This study includes 26 patients with esophageal cancer previously treated with IMRT planned on 4-dimensional computed tomography (4D-CT). For each patient, 7 proton pencil beam scanning (PBS) plans were created with different field configurations and optimization strategies. The effect of respiration was investigated by calculating the phase doses, 4D dose, and 4D dynamic dose (including interplay effects). The effect of anatomical changes was investigated by recalculating all plans on all phases of a 4D-CT surveillance scan. RESULTS: The most robust PBS plans were achieved using 2 posterior beams requiring coverage of planning target volume (PTV) and simultaneously using robust optimization (RO) of CTV (2PAPTVRO), resulting in only 1 patient showing V95%CTV <97% in 1 or more phases of the planning CT. For the least robust PBS plans obtained using lateral + posterior beams and CTV-RO, but not requiring PTV coverage (2LPRO), 10 patients showed underdosage. For IMRT, 2 patients showed underdosage. Interplay effects reduced V95%CTV significantly when delivering only 1 fraction, but the effects generally averaged out after 10 fractions. The effect of interplay was significantly larger for RO-only plans compared with plans optimized with RO combined with PTV coverage. Combining the effect of anatomical changes and respiration on the 4D-CT surveillance scan resulted in V95%CTV <97% for 3 2PAPTVRO, 16 2LPRO, and 8 IMRT patients. CONCLUSIONS: PBS using posterior beam angles was more robust to anatomical changes and respiration than IMRT. The effect of respiration was enhanced when anatomical changes were present. Single fraction interplay effects deteriorated the dose distribution but were averaged out after 10 fractions.


Asunto(s)
Neoplasias Esofágicas/radioterapia , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Anciano , Anciano de 80 o más Años , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/patología , Femenino , Tomografía Computarizada Cuatridimensional , Humanos , Masculino , Persona de Mediana Edad , Movimiento (Física) , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada , Respiración
18.
Clin Transl Radiat Oncol ; 27: 8-14, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33385069

RESUMEN

PURPOSE: Prospectively scored radiation pneumonitis (RP) observed in a national, randomized phase II dose-escalation trial for patients with locally advanced non-small cell lung cancer (NSCLC) was investigated. METHODS: Patients with stage IIB-IIIB histologically proven NSCLC were treated with concomitant chemo-radiotherapy (oral Vinorelbine 3times/week) at 60 Gy/30fx (A-59pts) and 66 Gy/33fx (B-58pts) from 2009 to 2013 at five Danish RT centers. Grade 2 RP (CTCAEv3.0) was investigated with univariate analysis for association with clinical and dosimetric parameters, including dyspnea and cough at baseline and during RT. Multivariable logistic regression and Cox regression with regularization were used to find a multivariable model for RP ≥ G2. RESULTS: Despite a tendency of higher mean lung dose in the high-dose arm (median[range] A = 14.9 Gy[5.8,23.1], B = 17.5 Gy[8.6,24.8], p = 0.075), pulmonary toxicities were not significantly different (RP ≥ G2 41%(A) and 52%(B), p = 0.231). A Kaplan Meier analysis of the time to RP ≥ G2 between the two arms did not reach statistical significance (p = 0.180). Statistically significant risk factors for RP ≥ G2 were GTV size (OR = 2.091/100 cm3, p = 0.002), infection at baseline or during RT (OR = 8.087, p = 0.026), dyspnea at baseline (OR = 2.184, p = 0.044) and increase of cough during RT (OR = 2.787, p = 0.008). In the multivariable logistic regression and the Cox regression analysis, the deviances of the most predictive models were within one standard deviation of the null model. CONCLUSION: No statistical difference between the high- and low dose arm was found in the risk of developing RP. The univariate analysis identified target volume, infection, dyspnea at baseline, and increase of cough during RT as risk factors for RP. The number of patients was too small to establish a statistically sound multivariable model.

19.
Radiother Oncol ; 156: 102-112, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33285194

RESUMEN

PURPOSE: To define instructions for delineation of target volumes in the neoadjuvant setting in oesophageal cancer. MATERIALS AND METHODS: Radiation oncologists of five European centres participated in the following consensus process: [1] revision of published (MEDLINE) and national/institutional delineation guidelines; [2] first delineation round of five cases (patient 1-5) according to national/institutional guidelines; [3] consensus meeting to discuss the results of step 1 and 2, followed by a target volume delineation proposal; [4] circulation of proposed instructions for target volume delineation and atlas for feedback; [5] second delineation round of five new cases (patient 6-10) to peer review and validate (two additional centres) the agreed delineation guidelines and atlas; [6] final consensus on the delineation guidelines depicted in an atlas. Target volumes of the delineation rounds were compared between centres by Dice similarity coefficient (DSC) and maximum/mean undirected Hausdorff distances (Hmax/Hmean). RESULTS: In the first delineation round, the consistency between centres was moderate (CTVtotal: DSC = 0.59-0.88; Hmean = 0.2-0.4 cm). Delineations in the second round were much more consistent. Lowest variability was obtained between centres participating in the consensus meeting (CTVtotal: DSC: p < 0.050 between rounds for patients 6/7/8/10; Hmean: p < 0.050 for patients 7/8/10), compared to validation centres (CTVtotal: DSC: p < 0.050 between validation and consensus meeting centres for patients 6/7/8; Hmean: p < 0.050 for patients 7/10). A proposal for delineation of target volumes and an atlas were generated. CONCLUSION: We proposed instructions for target volume delineation and an atlas for the neoadjuvant radiation treatment in oesophageal cancer. These will enable a more uniform delineation of patients in clinical practice and clinical trials.


Asunto(s)
Neoplasias Esofágicas , Terapia Neoadyuvante , Consenso , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/radioterapia , Humanos , Variaciones Dependientes del Observador , Oncólogos de Radiación , Planificación de la Radioterapia Asistida por Computador
20.
Sci Rep ; 10(1): 16223, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004849

RESUMEN

Stereotactic radiosurgery (SRS) has proven an effective tool for the treatment of brain tumors, arteriovenous malformation, and functional conditions. However, radiation-induced therapeutic effect in viable cells in functional SRS is also suggested. Evaluation of the proposed modulatory effect of irradiation on neuronal activity without causing cellular death requires the knowledge of radiation dose tolerance at very small tissue volume. Therefore, we aimed to establish a porcine model to study the effects of ultra-high radiosurgical doses in small volumes of the brain. Five minipigs received focal stereotactic radiosurgery with single large doses of 40-100 Gy to 5-7.5 mm fields in the left primary motor cortex and the right subcortical white matter, and one animal remained as unirradiated control. The animals were followed-up with serial MRI, PET scans, and histology 6 months post-radiation. We observed a dose-dependent relation of the histological and MRI changes at 6 months post-radiation. The necrotic lesions were seen in the grey matter at 100 Gy and in white matter at 60 Gy. Furthermore, small volume radiosurgery at different dose levels induced vascular, as well as neuronal cell changes and glial cell remodeling.


Asunto(s)
Encéfalo/cirugía , Necrosis , Traumatismos por Radiación/patología , Radiocirugia/efectos adversos , Animales , Encéfalo/patología , Femenino , Imagenología Tridimensional/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Traumatismos por Radiación/diagnóstico por imagen , Traumatismos por Radiación/etiología , Porcinos , Porcinos Enanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA