Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5336, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914549

RESUMEN

Transition metal chalcogenides have been identified as low-cost and efficient electrocatalysts to promote the hydrogen evolution reaction in alkaline media. However, the identification of active sites and the underlying catalytic mechanism remain elusive. In this work, we employ operando X-ray absorption spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy to elucidate that NiS undergoes an in-situ phase transition to an intimately mixed phase of Ni3S2 and NiO, generating highly active synergistic dual sites at the Ni3S2/NiO interface. The interfacial Ni is the active site for water dissociation and OH* adsorption while the interfacial S acts as the active site for H* adsorption and H2 evolution. Accordingly, the in-situ formation of Ni3S2/NiO interfaces enables NiS electrocatalysts to achieve an overpotential of only 95 ± 8 mV at a current density of 10 mA cm-2. Our work highlighted that the chemistry of transition metal chalcogenides is highly dynamic, and a careful control of the working conditions may lead to the in-situ formation of catalytic species that boost their catalytic performance.

2.
Nanoscale Adv ; 6(11): 2875-2891, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38817433

RESUMEN

Copper oxides are promising photocathode materials for solar hydrogen production due to their narrow optical band gap energy allowing broad visible light absorption. However, they suffer from severe photocorrosion upon illumination, mainly due to copper reduction. Nanostructuring has been proven to enhance the photoresponse of CuO photocathodes; however, there is a lack of precise structural control on the nanoscale upon sol-gel synthesis and calcination for achieving optically transparent CuO thin film photoabsorbers. In this study, nanoporous and nanocrystalline CuO networks were prepared by a soft-templating and dip-coating method utilizing poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic® F-127) as a structure-directing agent, resulting for the first-time in uniformly structured, crack-free, and optically transparent CuO thin films. The photoelectrochemical properties of the nanoporous CuO frameworks were investigated as a function of the calcination temperature and film thickness, revealing important information about the photocurrent, photostability, and photovoltage. Based on surface photovoltage spectroscopy (SPV), the films are p-type and generate up to 60 mV photovoltage at 2.0 eV (0.050 mW cm-2) irradiation for the film annealed at 750 °C. For these high annealing temperatures, the nanocrystalline domains in the thin film structure are more developed, resulting in improved electronic quality. In aqueous electrolytes with or without methyl viologen (as a fast electron acceptor), CuO films show cathodic photocurrents of up to -2.4 mA cm-2 at 0.32 V vs. RHE (air mass (AM) 1.5). However, the photocurrents were found to be entirely due to photocorrosion of the films and decay to near zero over the course of 20 min under AM 1.5 illumination. These fundamental results on the structural and morphological development upon calcination provide a direction and show the necessity for further (surface) treatment of sol-gel derived CuO photocathodes for photoelectrochemical applications. The study demonstrates how to control the size of nanopores starting from mesopore formation at 400 °C to the evolution of macroporous frameworks at 750 °C.

3.
Adv Sci (Weinh) ; 10(28): e2302623, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37544912

RESUMEN

Electrochemical nitrate reduction to ammonia powered by renewable electricity is not only a promising alternative to the established energy-intense and non-ecofriendly Haber-Bosch reaction for ammonia generation but also a future contributor to the ever-more important denitrification schemes. Nevertheless, this reaction is still impeded by the lack of understanding for the underlying reaction mechanism on the molecular scale which is necessary for the rational design of active, selective, and stable electrocatalysts. Herein, a novel single-site bismuth catalyst (Bi-N-C) for nitrate electroreduction is reported to produce ammonia with maximum Faradaic efficiency of 88.7% and at a high rate of 1.38 mg h-1 mgcat -1 at -0.35 V versus reversible hydrogen electrode (RHE). The active center (described as BiN2 C2 ) is uncovered by detailed structural analysis. Coupled density functional theory calculations are applied to analyze the reaction mechanism and potential rate-limiting steps for nitrate reduction based on the BiN2 C2 model. The findings highlight the importance of model catalysts to utilize the potential of nitrate reduction as a new-generation nitrogen-management technology based on the construction of efficient active sites.

4.
ChemSusChem ; 16(20): e202300479, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37452791

RESUMEN

A facile and eco-friendly strategy is presented for synthesizing novel nanocomposites, with MoP quantum dots (QDs) as cores and graphitic carbon as shells, these nanoparticles are dispersed in a nitrogen and phosphorus-doped porous carbon and carbon nanotubes (CNTs) substrates (MoP@NPC/CNT). The synthesis involves self-assembling reactions to form single-source precursors (SSPs), followed by pyrolysis at 900 °C in an inert atmosphere to obtain MoP@NPC/CNT-900. The presence of carbon layers on the MoP QDs effectively prevents particle aggregation, enhancing the utilization of active MoP species. The optimized sample, MoP@NPC/CNT-900, exhibits remarkable electrocatalytic activity and durability for the hydrogen evolution reaction (HER). It demonstrates a low overpotential of 155 mV at 10 mA cm-2 , a small Tafel slope of 76 mV dec-1 , and sustained performance over 20 hours in 0.5 M H2 SO4 . Furthermore, the catalyst shows excellent activity in 1 M KOH, with a relatively low overpotential of 131 mV and long-term durability under constant current input. The exceptional HER activity can be attributed to several factors: the superior performance of MoP QDs, the large surface area and good conductivity of the carbon substrates, and the synergistic effect between MoP and carbon species.

5.
J Hazard Mater ; 445: 130607, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-37056017

RESUMEN

Graphite negative electrodes are unbeaten hitherto in lithium-ion batteries (LiBs) due to their unique chemical and physical properties. Thus, the increasing scarcity of graphite resources makes smart recycling or repurposing of discarded graphite particularly imperative. However, the current recycling techniques still need to be improved upon with urgency. Herein a facile and efficient hydrometallurgical process is reported to effectively regenerate aged (39.5 %, 75 % state-of-health, SOH) scrapped graphite (SG) from end-of-life lithium-ion batteries. Ultimately, the first cycle reversible capacity of SG1 (SOH = 39.5 %) improved from 266 mAh/g to 337 mAh/g while 330 mAh/g (98 %) remain after 100 cycles at 0.5 C. The reversible capacity for the first cycle of SG2 (SOH = 75 %) boosted from 335 mAh/g to 366 mAh/g with the capacity retention of 99.3 % after 100 cycles at 0.5 C, which is comparable with the benchmark commercial graphite. The regenerated graphites RG1 and RG2 exhibit excellent output characteristics even increasing the rate up to 4 C. This is the best rate level reported in the literature to date. Finally, the diffusion coefficient of Li ions during deintercalation and intercalation in the regenerated graphites have been measured by galvanostatic intermittent titration technique (GITT), determining values 2 orders-of-magnitude higher than that of the spent counterparts. Taking advantage of the synergistic effect of acid leaching and heat treatment, this strategy provides a simple and up-scalable method to recycle graphitic anodes.

6.
ACS Nano ; 17(6): 6113-6120, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36926832

RESUMEN

At the nanoscale, the properties of materials depend critically on the presence of crystal defects. However, imaging and characterizing the structure of defects in three dimensions inside a crystal remain a challenge. Here, by using Bragg coherent diffraction imaging, we observe an unexpected anomalous {110} glide plane in two Pt submicrometer crystals grown by very different processes and having very different morphologies. The structure of the defects (type, associated glide plane, and lattice displacement) is imaged in these faceted Pt crystals. Using this noninvasive technique, both plasticity and unusual defect behavior can be probed at the nanoscale.

7.
Chemistry ; 29(24): e202300277, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36823437

RESUMEN

Metal oxide-based photoelectrodes for solar water splitting often utilize nanostructures to increase the solid-liquid interface area. This reduces charge transport distances and increases the photocurrent for materials with short minority charge carrier diffusion lengths. While the merits of nanostructuring are well established, the effect of surface order on the photocurrent and carrier recombination has not yet received much attention in the literature. To evaluate the impact of pore ordering on the photoelectrochemical properties, mesoporous CuFe2 O4 (CFO) thin film photoanodes were prepared by dip-coating and soft-templating. Here, the pore order and geometry can be controlled by addition of copolymer surfactants poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic® F-127), polyisobutylene-block-poly(ethylene oxide) (PIB-PEO) and poly(ethylene-co-butylene)-block-poly(ethylene oxide) (Kraton liquid™-PEO, KLE). The non-ordered CFO showed the highest photocurrent density of 0.2 mA/cm2 at 1.3 V vs. RHE for sulfite oxidation, but the least photocurrent density for water oxidation. Conversely, the ordered CFO presented the best photoelectrochemical water oxidation performance. These differences can be understood on the basis of the high surface area, which promotes hole transfer to sulfite (a fast hole acceptor), but retards oxidation of water (a slow hole acceptor) due to electron-hole recombination at the defective surface. This interpretation is confirmed by intensity-modulated photocurrent (IMPS) and vibrating Kelvin probe surface photovoltage spectroscopy (VKP-SPS). The lowest surface recombination rate was observed for the ordered KLE-based mesoporous CFO, which retains spherical pore shapes at the surface resulting in fewer surface defects. Overall, this work shows that the photoelectrochemical energy conversion efficiency of copper ferrite thin films is not just controlled by the surface area, but also by surface order.

8.
Small ; 19(14): e2205412, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36653934

RESUMEN

The novel material class of high entropy oxides with their unique and unexpected physicochemical properties is a candidate for energy applications. Herein, it is reported for the first time about the physico- and (photo-) electrochemical properties of ordered mesoporous (CoNiCuZnMg)Fe2 O4 thin films synthesized by a soft-templating and dip-coating approach. The A-site high entropy ferrites (HEF) are composed of periodically ordered mesopores building a highly accessible inorganic nanoarchitecture with large specific surface areas. The mesoporous spinel HEF thin films are found to be phase-pure and crack-free on the meso- and macroscale. The formation of the spinel structure hosting six distinct cations is verified by X-ray-based characterization techniques. Photoelectron spectroscopy gives insight into the chemical state of the implemented transition metals supporting the structural characterization data. Applied as photoanode for photoelectrochemical water splitting, the HEFs are photostable over several hours but show only low photoconductivity owing to fast surface recombination, as evidenced by intensity-modulated photocurrent spectroscopy. When applied as oxygen evolution reaction electrocatalyst, the HEF thin films possess overpotentials of 420 mV at 10 mA cm-2 in 1 m KOH. The results imply that the increase of the compositional disorder enhances the electronic transport properties, which are beneficial for both energy applications.

9.
Angew Chem Int Ed Engl ; 62(12): e202218039, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36656994

RESUMEN

The chemical selectivity and faradaic efficiency of high-index Cu facets for the CO2 reduction reaction (CO2 RR) is investigated. More specifically, shape-controlled nanoparticles enclosed by Cu {hk0} facets are fabricated using Cu multilayer deposition at three distinct layer thicknesses on the surface facets of Au truncated ditetragonal nanoprisms (Au DTPs). Au DTPs are shapes enclosed by 12 high-index {310} facets. Facet angle analysis confirms DTP geometry. Elemental mapping analysis shows Cu surface layers are uniformly distributed on the Au {310} facets of the DTPs. The 7 nm Au@Cu DTPs high-index {hk0} facets exhibit a CH4 : CO product ratio of almost 10 : 1 compared to a 1 : 1 ratio for the reference 7 nm Au@Cu nanoparticles (NPs). Operando Fourier transform infrared spectroscopy spectra disclose reactive adsorbed *CO as the main intermediate, whereas CO stripping experiments reveal the high-index facets enhance the *CO formation followed by rapid desorption or hydrogenation.

10.
Chempluschem ; 87(12): e202200338, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36478656

RESUMEN

Carbon supported metallic nanomaterials are of great interest due to their low-cost, high durability and promising functional performance. Herein, a highly active oxygen evolution reaction (OER) electrocatalyst comprised of defective carbon shell encapsulated metal (Fe, Co, Ni) nanoparticles and their alloys supported on in-situ formed N-doped graphene/carbon nanotube hybrid is synthesized from novel single-source-precursors (SSP). The precursors are synthesized by a facile one-pot reaction of tannic acid with polyethylenimine and different metal ions and subsequent pyrolysis of the SSP. Benefiting from the heteroatom doping of carbon and formation of well-encapsulated metal/alloy nanoparticles, the obtained FeNi@NC-900 catalyst possesses lowest overpotentials of 310 mV to achieve a current density of 10 mA cm-2 for OER with a small Tafel slope value of 45 mV dec-1 , indicating excellent catalytic performance due to the following features: (1) A synergistic electronic effect among metal alloy nanoparticles, nitrogen-doped carbon, and entangled carbon nanotubes; (2) penetration of electrolyte is promoted towards the active sites through the porous structure of the formed mesoporous carbon clusters; (3) the unique core-shell nanostructure of the hybrid material effectively curbs the degradation of electrocatalyst by protecting the alloy nanoparticles from harsh electrolyte. This work advances an inexpensive and facile method towards the development of transition metal-based hybrid material for potential energy storage and conversion.

11.
Ind Eng Chem Res ; 61(38): 14211-14221, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36193442

RESUMEN

Solid sorbents are essential for developing technologies that directly capture CO2 from air. In solid sorbents, metal oxides and/or alkali metal carbonates such as potassium carbonate (K2CO3) are promising active components owing to their high thermal stability, low cost, and ability to chemisorb the CO2 present at low concentrations in air. However, this chemisorption process is likely limited by internal diffusion of CO2 into the bulk of K2CO3. Therefore, the size of the K2CO3 particles is expected to be an important factor in determining the kinetics of the sorption process during CO2 capture. To date, the effects of particle size on supported K2CO3 sorbents are unknown mainly because particle sizes cannot be unambiguously determined. Here, we show that by using a series of techniques, the size of supported K2CO3 particles can be established. We prepared size-tuned carbon-supported K2CO3 particles by tuning the K2CO3 loading. We further used melting point depression of K2CO3 particles to collectively estimate the average K2CO3 particle sizes. Using these obtained average particle sizes, we show that the particle size critically affects the efficiency of the sorbent in CO2 capture from air and directly affects the kinetics of CO2 sorption as well as the energy input needed for the desorption step. By evaluating the mechanisms involved in the diffusion of CO2 and H2O into K2CO3 particles, we relate the microscopic characteristics of sorbents to their macroscopic performance, which is of interest for industrial-scale CO2 capture from air.

12.
ACS Appl Mater Interfaces ; 14(41): 47255-47261, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36209433

RESUMEN

Stable InP (001) surfaces are characterized by fully occupied and empty surface states close to the bulk valence and conduction band edges, respectively. The present photoemission data show, however, a surface Fermi level pinning only slightly below the midgap energy which gives rise to an appreciable surface band bending. By means of density functional theory calculations, it is shown that this apparent discrepancy is due to surface defects that form at finite temperature. In particular, the desorption of hydrogen from metalorganic vapor phase epitaxy grown P-rich InP (001) surfaces exposes partially filled P dangling bonds that give rise to band gap states. These defects are investigated with respect to surface reactivity in contact with molecular water by low-temperature water adsorption experiments using photoemission spectroscopy and are compared to our computational results. Interestingly, these hydrogen-related gap states are robust with respect to water adsorption, provided that water does not dissociate. Because significant water dissociation is expected to occur at steps rather than terraces, surface band bending of a flat InP (001) surface is not affected by water exposure.

13.
Small ; 18(42): e2204116, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36114151

RESUMEN

The electrochemical nitrogen reduction reaction (NRR) to ammonia (NH3 ) is a potentially carbon-neutral and decentralized supplement to the established Haber-Bosch process. Catalytic activation of the highly stable dinitrogen molecules remains a great challenge. Especially metal-free nitrogen-doped carbon catalysts do not often reach the desired selectivity and ammonia production rates due to their low concentration of NRR active sites and possible instability of heteroatoms under electrochemical potential, which can even contribute to false positive results. In this context, the electrochemical activation of nitrogen-doped carbon electrocatalysts is an attractive, but not yet established method to create NRR catalytic sites. Herein, a metal-free C2 N material (HAT-700) is electrochemically etched prior to application in NRR to form active edge-sites originating from the removal of terminal nitrile groups. Resulting activated metal-free HAT-700-A shows remarkable catalytic activity in electrochemical nitrogen fixation with a maximum Faradaic efficiency of 11.4% and NH3 yield of 5.86 µg mg-1 cat h-1 . Experimental results and theoretical calculations are combined, and it is proposed that carbon radicals formed during activation together with adjacent pyridinic nitrogen atoms play a crucial role in nitrogen adsorption and activation. The results demonstrate the possibility to create catalytically active sites on purpose by etching labile functional groups prior to NRR.


Asunto(s)
Carbono , Fijación del Nitrógeno , Carbono/química , Amoníaco , Dominio Catalítico , Nitrógeno/química , Metales , Nitrilos
14.
ChemElectroChem ; 9(3): e202101365, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35911790

RESUMEN

Upon the electrochemical reduction of an in situ generated 5-diazo-1,10-phenanthroline ion, phenanthroline was covalently attached to a gold electrode. The grafted molecules act as a ligand when brought in contact with a copper-containing electrolyte solution. As the ligands are limited in spatial movement, the exclusive formation of the active species with only one phenanthroline ligand coordinated was expected. The in situ generated complexes have been investigated for activity in the oxygen reduction reaction, for which an overpotential of 800 mV is observed. During catalysis, initially a thick copper layer is formed on top of an organic layer that is still present on the gold surface. Upon deterioration of the organic layer underneath the copper over time, the amount of copper on the electrode and thereby the electrocatalytic activity decreases.

15.
ChemElectroChem ; 9(3): e202101692, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35911791

RESUMEN

H2O2 is a bulk chemical used as "green" alternative in a variety of applications, but has an energy and waste intensive production method. The electrochemical O2 reduction to H2O2 is viable alternative with examples of the direct production of up to 20% H2O2 solutions. In that respect, we found that the dinuclear complex Cu2(btmpa) (6,6'-bis[[bis(2-pyridylmethyl)amino]methyl]-2,2'-bipyridine) reduces O2 to H2O2 with a selectivity up to 90 % according to single linear sweep rotating ring disk electrode measurements. Microbalance experiments showed that complex reduction leads to surface adsorption thereby increasing the catalytic current. More importantly, we kept a high Faradaic efficiency for H2O2 between 60 and 70 % over the course of 2 h of amperometry by introducing high potential intervals to strip deposited copper (depCu). This is the first example of extensive studies into the long term electrochemical O2 to H2O2 reduction by a molecular complex which allowed to retain the high intrinsic selectivity of Cu2(btmpa) towards H2O2 production leading to relevant levels of H2O2.

16.
Nat Commun ; 13(1): 3003, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637233

RESUMEN

Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {hkl} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O2 adsorption or desorption during O2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields.

17.
ACS Catal ; 12(8): 4597-4607, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35465245

RESUMEN

The homogeneity of molecular Co-based water oxidation catalysts (WOCs) has been a subject of debate over the last 10 years as assumed various homogeneous Co-based WOCs were found to actually form CoO x under operating conditions. The homogeneity of the Co(HL) (HL = N,N-bis(2,2'-bipyrid-6-yl)amine) system was investigated with cyclic voltammetry, electrochemical quartz crystal microbalance, and X-ray photoelectron spectroscopy. The obtained experimental results were compared with heterogeneous CoO x . Although it is shown that Co(HL) interacts with the electrode during electrocatalysis, the formation of CoO x was not observed. Instead, a molecular deposit of Co(HL) was found to be formed on the electrode surface. This study shows that deposition of catalytic material is not necessarily linked to the decomposition of homogeneous cobalt-based water oxidation catalysts.

18.
ACS Catal ; 12(1): 173-182, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35028190

RESUMEN

The presence of defects and chemical dopants in metal-free carbon materials plays an important role in the electrocatalysis of the oxygen reduction reaction (ORR). The precise control and design of defects and dopants in carbon electrodes will allow the fundamental understanding of activity-structure correlations for tailoring catalytic performance of carbon-based, most particularly graphene-based, electrode materials. Herein, we adopted monolayer graphene - a model carbon-based electrode - for systematical introduction of nitrogen and oxygen dopants, together with vacancy defects, and studied their roles in catalyzing ORR. Compared to pristine graphene, nitrogen doping exhibited a limited effect on ORR activity. In contrast, nitrogen doping in graphene predoped with vacancy defects or oxygen enhanced the activities at 0.4 V vs the reversible hydrogen electrode (RHE) by 1.2 and 2.0 times, respectively. The optimal activity was achieved for nitrogen doping in graphene functionalized with oxygenated defects, 12.8 times more than nitrogen-doped and 7.7 times more than pristine graphene. More importantly, oxygenated defects are highly related to the 4e- pathway instead of nitrogen dopants. This work indicates a non-negligible contribution of oxygen and especially oxygenated vacancy defects for the catalytic activity of nitrogen-doped graphene.

19.
Nat Commun ; 12(1): 5385, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508094

RESUMEN

At the nanoscale, elastic strain and crystal defects largely influence the properties and functionalities of materials. The ability to predict the structural evolution of catalytic nanocrystals during the reaction is of primary importance for catalyst design. However, to date, imaging and characterising the structure of defects inside a nanocrystal in three-dimensions and in situ during reaction has remained a challenge. We report here an unusual twin boundary migration process in a single platinum nanoparticle during CO oxidation using Bragg coherent diffraction imaging as the characterisation tool. Density functional theory calculations show that twin migration can be correlated with the relative change in the interfacial energies of the free surfaces exposed to CO. The x-ray technique also reveals particle reshaping during the reaction. In situ and non-invasive structural characterisation of defects during reaction opens new avenues for understanding defect behaviour in confined crystals and paves the way for strain and defect engineering.

20.
ACS Appl Electron Mater ; 3(7): 3185-3199, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34337417

RESUMEN

Despite the extensive ongoing research on MoS2 field effect transistors (FETs), the key role of device processing conditions in the chemistry involved at the metal-to-MoS2 interface and their influence on the electrical performance are often overlooked. In addition, the majority of reports on MoS2 contacts are based on exfoliated MoS2, whereas synthetic films are even more susceptible to the changes made in device processing conditions. In this paper, working FETs with atomic layer deposition (ALD)-based MoS2 films and Ti/Au contacts are demonstrated, using current-voltage (I-V) characterization. In pursuit of optimizing the contacts, high-vacuum thermal annealing as well as O2/Ar plasma cleaning treatments are introduced, and their influence on the electrical performance is studied. The electrical findings are linked to the interface chemistry through X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM) analyses. XPS evaluation reveals that the concentration of organic residues on the MoS2 surface, as a result of resist usage during the device processing, is significant. Removal of these contaminations with O2/Ar plasma changes the MoS2 chemical state and enhances the MoS2 electrical properties. Based on the STEM analysis, the observed progress in the device electrical characteristics could also be associated with the formation of a continuous TiS x layer at the Ti-to-MoS2 interface. Scaling down the Ti interlayer thickness and replacing it with Cr is found to be beneficial as well, leading to further device performance advancements. Our findings are of value for attaining optimal contacts to synthetic MoS2 films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...