Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Microorganisms ; 11(1)2022 Dec 21.
Article En | MEDLINE | ID: mdl-36677317

Primate simplexviruses are closely related neurotropic herpesviruses, which are largely apathogenic in their respective host species. However, cross-species transmission of Macacine alphaherpesvirus 1 (McHV1, also termed herpes B virus) from rhesus macaques to humans can cause fatal encephalomyelitis. In contrast, closely related viruses, such as Cercopithecine alphaherpesvirus 2 (CeHV2, also termed simian agent 8) or Papiine alphaherpesvirus 2 (PaHV2, also termed herpesvirus papio 2), have not been linked to human disease and are believed to be largely apathogenic in humans. Here, we investigated whether McHV1, PaHV2 and CeHV2 differ in their capacity to infect human and non-human primate (NHP) cells. For comparison, we included the human simplexviruses HSV1 and HSV2 in our analyses. All five viruses replicated efficiently in cell lines of human and African green monkey origin, and McHV1 and PaHV2 also showed robust replication in rhesus macaque cell lines. In contrast, the replication of CeHV2 and particularly HSV1 and HSV2 in cell lines of rhesus macaque origin were reduced or inefficient. Similarly, McHV1, but not CeHV2, efficiently infected rhesus macaque brain organoids. These results point towards the previously unappreciated partial resistance of certain rhesus macaque cells to HSV1/HSV2/CeHV2 infection and reveal similarities between the cell tropism of McHV1 and PaHV2 that might be relevant for risk assessment.

2.
Clin Sci (Lond) ; 135(24): 2781-2791, 2021 12 22.
Article En | MEDLINE | ID: mdl-34878105

Low plasma levels of the signaling lipid metabolite sphingosine 1-phosphate (S1P) are associated with disrupted endothelial cell (EC) barriers, lymphopenia and reduced responsivity to hypoxia. Total S1P levels were also reduced in 23 critically ill patients with coronavirus disease 2019 (COVID-19), and the two main S1P carriers, serum albumin (SA) and high-density lipoprotein (HDL) were dramatically low. Surprisingly, we observed a carrier-changing shift from SA to HDL, which probably prevented an even further drop in S1P levels. Furthermore, intracellular S1P levels in red blood cells (RBCs) were significantly increased in COVID-19 patients compared with healthy controls due to up-regulation of S1P producing sphingosine kinase 1 and down-regulation of S1P degrading lyase expression. Cell culture experiments supported increased sphingosine kinase activity and unchanged S1P release from RBC stores of COVID-19 patients. These observations suggest adaptive mechanisms for maintenance of the vasculature and immunity as well as prevention of tissue hypoxia in COVID-19 patients.


COVID-19/blood , COVID-19/physiopathology , Erythrocytes/metabolism , Lysophospholipids/blood , Sphingosine/analogs & derivatives , Aged , Cells, Cultured , Humans , Lipoproteins, HDL/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , SARS-CoV-2 , Serum Albumin/metabolism , Sphingosine/blood
3.
Cell Rep ; 36(3): 109415, 2021 07 20.
Article En | MEDLINE | ID: mdl-34270919

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants threatens efforts to contain the coronavirus disease 2019 (COVID-19) pandemic. The number of COVID-19 cases and deaths in India has risen steeply, and a SARS-CoV-2 variant, B.1.617, is believed to be responsible for many of these cases. The spike protein of B.1.617 harbors two mutations in the receptor binding domain, which interacts with the angiotensin converting enzyme 2 (ACE2) receptor and constitutes the main target of neutralizing antibodies. Therefore, we analyze whether B.1.617 is more adept in entering cells and/or evades antibody responses. B.1.617 enters two of eight cell lines tested with roughly 50% increased efficiency and is equally inhibited by two entry inhibitors. In contrast, B.1.617 is resistant against bamlanivimab, an antibody used for COVID-19 treatment. B.1.617 evades antibodies induced by infection or vaccination, although less so than the B.1.351 variant. Collectively, our study reveals that antibody evasion of B.1.617 may contribute to the rapid spread of this variant.


Angiotensin-Converting Enzyme 2/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Viral/pharmacology , COVID-19 Drug Treatment , Esters/pharmacology , Guanidines/pharmacology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cell Line , Humans , Protease Inhibitors/pharmacology , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vaccination
4.
Front Med (Lausanne) ; 8: 644715, 2021.
Article En | MEDLINE | ID: mdl-34113632

Background: Acute kidney injury (AKI) is very common in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disease 2019 (COVID-19) and considered as a risk factor for COVID-19 severity. SARS-CoV-2 renal tropism has been observed in COVID-19 patients, suggesting that direct viral injury of the kidneys may contribute to AKI. We examined 20 adult cases with confirmed SARS-CoV-2 infection requiring ICU supportive care in a single-center prospective observational study and investigated whether urinary markers for viral infection (SARS-CoV-2 N) and shedded cellular membrane proteins (ACE2, TMPRSS2) allow identification of patients at risk for AKI and outcome of COVID-19. Objectives: The objective of the study was to evaluate whether urinary markers for viral infection (SARS-CoV-2 N) and shedded cellular membrane proteins (ACE2, TMPRSS2) allow identification of patients at risk for AKI and outcome of COVID-19. Results: Urinary SARS-CoV-2 N measured at ICU admission identified patients at risk for AKI in COVID-19 (HR 5.9, 95% CI 1.4-26, p = 0.0095). In addition, the combination of urinary SARS-CoV-2 N and plasma albumin measurements further improved the association with AKI (HR 11.4, 95% CI 2.7-48, p = 0.0016). Finally, combining urinary SARS-CoV-2 N and plasma albumin measurements associated with the length of ICU supportive care (HR 3.3, 95% CI 1.1-9.9, p = 0.0273) and premature death (HR 7.6, 95% CI 1.3-44, p = 0.0240). In contrast, urinary ACE2 and TMPRSS2 did not correlate with AKI in COVID-19. Conclusions: In conclusion, urinary SARS-CoV-2 N levels associate with risk for AKI and correlate with COVID-19 severity.

5.
Clin Infect Dis ; 73(11): 2000-2008, 2021 12 06.
Article En | MEDLINE | ID: mdl-34134134

BACKGROUND: Vaccine-induced neutralizing antibodies are key in combating the coronavirus disease 2019 (COVID-19) pandemic. However, delays of boost immunization due to limited availability of vaccines may leave individuals vulnerable to infection and prolonged or severe disease courses. The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC)-B.1.1.7 (United Kingdom), B.1.351 (South Africa), and P.1 (Brazil)-may exacerbate this issue, as the latter two are able to evade control by antibodies. METHODS: We assessed humoral and T-cell responses against SARS-CoV-2 wild-type (WT), VOC, and endemic human coronaviruses (hCoVs) that were induced after single and double vaccination with BNT162b2. RESULTS: Despite readily detectable immunoglobulin G (IgG) against the receptor-binding domain of the SARS-CoV-2 S protein at day 14 after a single vaccination, inhibition of SARS-CoV-2 S-driven host cell entry was weak and particularly low for the B.1.351 variant. Frequencies of SARS-CoV-2 WT and VOC-specific T cells were low in many vaccinees after application of a single dose and influenced by immunity against endemic hCoV. The second vaccination significantly boosted T-cell frequencies reactive for WT and B.1.1.7 and B.1.351 variants. CONCLUSIONS: These results call into question whether neutralizing antibodies significantly contribute to protection against COVID-19 upon single vaccination and suggest that cellular immunity is central for the early defenses against COVID-19.


BNT162 Vaccine/immunology , COVID-19 , Immunity, Cellular , Immunity, Humoral , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/prevention & control , Humans , Immunoglobulin G/blood , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination
6.
Cell Rep ; 35(3): 109017, 2021 04 20.
Article En | MEDLINE | ID: mdl-33857422

Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to farmed mink has been observed in Europe and the US. In the infected animals, viral variants arose that harbored mutations in the spike (S) protein, the target of neutralizing antibodies, and these variants were transmitted back to humans. This raised concerns that mink might become a constant source of human infection with SARS-CoV-2 variants associated with an increased threat to human health and resulted in mass culling of mink. Here, we report that mutations frequently found in the S proteins of SARS-CoV-2 from mink are mostly compatible with efficient entry into human cells and its inhibition by soluble angiotensin-converting enzyme 2 (ACE2). In contrast, mutation Y453F reduces neutralization by an antibody with emergency use authorization for coronavirus disease 2019 (COVID-19) therapy and sera/plasma from COVID-19 patients. These results suggest that antibody responses induced upon infection or certain antibodies used for treatment might offer insufficient protection against SARS-CoV-2 variants from mink.


Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Mink , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , A549 Cells , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/genetics , COVID-19/immunology , Chlorocebus aethiops , Cricetinae , Humans , Mink/immunology , Mink/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
7.
Cell ; 184(9): 2384-2393.e12, 2021 04 29.
Article En | MEDLINE | ID: mdl-33794143

The global spread of SARS-CoV-2/COVID-19 is devastating health systems and economies worldwide. Recombinant or vaccine-induced neutralizing antibodies are used to combat the COVID-19 pandemic. However, the recently emerged SARS-CoV-2 variants B.1.1.7 (UK), B.1.351 (South Africa), and P.1 (Brazil) harbor mutations in the viral spike (S) protein that may alter virus-host cell interactions and confer resistance to inhibitors and antibodies. Here, using pseudoparticles, we show that entry of all variants into human cells is susceptible to blockade by the entry inhibitors soluble ACE2, Camostat, EK-1, and EK-1-C4. In contrast, entry of the B.1.351 and P.1 variant was partially (Casirivimab) or fully (Bamlanivimab) resistant to antibodies used for COVID-19 treatment. Moreover, entry of these variants was less efficiently inhibited by plasma from convalescent COVID-19 patients and sera from BNT162b2-vaccinated individuals. These results suggest that SARS-CoV-2 may escape neutralizing antibody responses, which has important implications for efforts to contain the pandemic.


Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Animals , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , Cell Line , Drug Resistance, Viral , Humans , Immunization, Passive , Kinetics , Membrane Fusion , Models, Molecular , Neutralization Tests , Serine Endopeptidases/metabolism , Solubility , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Virus Internalization , COVID-19 Serotherapy
8.
EBioMedicine ; 65: 103255, 2021 Mar.
Article En | MEDLINE | ID: mdl-33676899

BACKGROUND: Antivirals are needed to combat the COVID-19 pandemic, which is caused by SARS-CoV-2. The clinically-proven protease inhibitor Camostat mesylate inhibits SARS-CoV-2 infection by blocking the virus-activating host cell protease TMPRSS2. However, antiviral activity of Camostat mesylate metabolites and potential viral resistance have not been analyzed. Moreover, antiviral activity of Camostat mesylate in human lung tissue remains to be demonstrated. METHODS: We used recombinant TMPRSS2, reporter particles bearing the spike protein of SARS-CoV-2 or authentic SARS-CoV-2 to assess inhibition of TMPRSS2 and viral entry, respectively, by Camostat mesylate and its metabolite GBPA. FINDINGS: We show that several TMPRSS2-related proteases activate SARS-CoV-2 and that two, TMPRSS11D and TMPRSS13, are robustly expressed in the upper respiratory tract. However, entry mediated by these proteases was blocked by Camostat mesylate. The Camostat metabolite GBPA inhibited recombinant TMPRSS2 with reduced efficiency as compared to Camostat mesylate. In contrast, both inhibitors exhibited similar antiviral activity and this correlated with the rapid conversion of Camostat mesylate into GBPA in the presence of serum. Finally, Camostat mesylate and GBPA blocked SARS-CoV-2 spread in human lung tissue ex vivo and the related protease inhibitor Nafamostat mesylate exerted augmented antiviral activity. INTERPRETATION: Our results suggest that SARS-CoV-2 can use TMPRSS2 and closely related proteases for spread in the upper respiratory tract and that spread in the human lung can be blocked by Camostat mesylate and its metabolite GBPA. FUNDING: NIH, Damon Runyon Foundation, ACS, NYCT, DFG, EU, Berlin Mathematics center MATH+, BMBF, Lower Saxony, Lundbeck Foundation, Novo Nordisk Foundation.


Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Esters/pharmacology , Guanidines/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/metabolism , Animals , Cell Line , Chlorocebus aethiops , Cricetinae , HEK293 Cells , Humans , Lung/pathology , Lung/virology , Membrane Proteins/biosynthesis , Molecular Dynamics Simulation , Serine Endopeptidases/biosynthesis , Serine Proteases/biosynthesis , Vero Cells , Virus Activation/drug effects , Virus Internalization/drug effects
9.
Front Immunol ; 12: 784989, 2021.
Article En | MEDLINE | ID: mdl-34987511

Effective treatment strategies for severe coronavirus disease (COVID-19) remain scarce. Hydrolysis of membrane-embedded, inert sphingomyelin by stress responsive sphingomyelinases is a hallmark of adaptive responses and cellular repair. As demonstrated in experimental and observational clinical studies, the transient and stress-triggered release of a sphingomyelinase, SMPD1, into circulation and subsequent ceramide generation provides a promising target for FDA-approved drugs. Here, we report the activation of sphingomyelinase-ceramide pathway in 23 intensive care patients with severe COVID-19. We observed an increase of circulating activity of sphingomyelinase with subsequent derangement of sphingolipids in serum lipoproteins and from red blood cells (RBC). Consistent with increased ceramide levels derived from the inert membrane constituent sphingomyelin, increased activity of acid sphingomyelinase (ASM) accurately distinguished the patient cohort undergoing intensive care from healthy controls. Positive correlational analyses with biomarkers of severe clinical phenotype support the concept of an essential pathophysiological role of ASM in the course of SARS-CoV-2 infection as well as of a promising role for functional inhibition with anti-inflammatory agents in SARS-CoV-2 infection as also proposed in independent observational studies. We conclude that large-sized multicenter, interventional trials are now needed to evaluate the potential benefit of functional inhibition of this sphingomyelinase in critically ill patients with COVID-19.


COVID-19/metabolism , Ceramides/metabolism , Signal Transduction , Sphingomyelin Phosphodiesterase/metabolism , Anti-Inflammatory Agents/therapeutic use , COVID-19/virology , Ceramides/blood , Enzyme Activation , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Fatty Acids/metabolism , Humans , Intensive Care Units , Patient Acuity , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sphingomyelin Phosphodiesterase/blood , Sphingomyelins/metabolism , COVID-19 Drug Treatment
10.
J Infect Dis ; 223(1): 56-61, 2021 01 04.
Article En | MEDLINE | ID: mdl-33128369

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused a pandemic with tens of millions of cases and hundreds of thousands of deaths. The infection causes coronavirus disease 2019 (COVID-19), a disease of the respiratory system of divergent severity. In the current study, humoral immune responses were characterized in a cohort of 143 patients with COVID-19 from the University Hospital Frankfurt am Main, Germany. METHODS: SARS-CoV-2-specific-antibodies were detected by enzyme-linked immunosorbent assay (ELISA). SARS-CoV-2 and human coronavirus NL63 neutralization activity was analyzed with pseudotyped lentiviral vectors. RESULTS: The severity of COVID-19 increased with age, and male patients encountered more serious symptoms than female patients. Disease severity was correlated with the amount of SARS-CoV-2-specific immunoglobulin (Ig) G and IgA and the neutralization activity of the antibodies. The amount of SARS-CoV-2-specific IgG antibodies decreased with time after polymerase chain reaction conformation of the infection, and antibodies directed against the nucleoprotein waned faster than spike protein-directed antibodies. In contrast, for the common flu coronavirus NL63, COVID-19 disease severity seemed to be correlated with low NL63-neutralizing activities, suggesting the possibility of cross-reactive protection. CONCLUSION: The results describe the humoral immune responses against SARS-CoV-2 and might aid the identification of correlates of protection needed for vaccine development.


Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Humoral , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Cohort Studies , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Female , Germany , HEK293 Cells , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Male , Middle Aged , Young Adult
11.
Crit Care Explor ; 2(11): e0284, 2020 Nov.
Article En | MEDLINE | ID: mdl-33225308

Severe acute respiratory syndrome coronavirus 2 cell entry depends on angiotensin-converting enzyme 2 and transmembrane serine protease 2 and is blocked in cell culture by camostat mesylate, a clinically proven protease inhibitor. Whether camostat mesylate is able to lower disease burden in coronavirus disease 2019 sepsis is currently unknown. DESIGN: Retrospective observational case series. SETTING: Patient treated in ICU of University hospital Göttingen, Germany. PATIENTS: Eleven critical ill coronavirus disease 2019 patients with organ failure were treated in ICU. INTERVENTIONS: Compassionate use of camostat mesylate (six patients, camostat group) or hydroxychloroquine (five patients, hydroxychloroquine group). MEASUREMENTS AND MAIN RESULTS: Clinical courses were assessed by Sepsis-related Organ Failure Assessment score at days 1, 3, and 8. Further, viral load, oxygenation, and inflammatory markers were determined. Sepsis-related Organ Failure Assessment score was comparable between camostat and hydroxychloroquine groups upon ICU admission. During observation, the Sepsis-related Organ Failure Assessment score decreased in the camostat group but remained elevated in the hydroxychloroquine group. The decline in disease severity in camostat mesylate treated patients was paralleled by a decline in inflammatory markers and improvement of oxygenation. CONCLUSIONS: The severity of coronavirus disease 2019 decreased upon camostat mesylate treatment within a period of 8 days and a similar effect was not observed in patients receiving hydroxychloroquine. Camostat mesylate thus warrants further evaluation within randomized clinical trials.

12.
bioRxiv ; 2020 Aug 05.
Article En | MEDLINE | ID: mdl-32793911

Antiviral therapy is urgently needed to combat the coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The protease inhibitor camostat mesylate inhibits SARS-CoV-2 infection of lung cells by blocking the virus-activating host cell protease TMPRSS2. Camostat mesylate has been approved for treatment of pancreatitis in Japan and is currently being repurposed for COVID-19 treatment. However, potential mechanisms of viral resistance as well as camostat mesylate metabolization and antiviral activity of metabolites are unclear. Here, we show that SARS-CoV-2 can employ TMPRSS2-related host cell proteases for activation and that several of them are expressed in viral target cells. However, entry mediated by these proteases was blocked by camostat mesylate. The camostat metabolite GBPA inhibited the activity of recombinant TMPRSS2 with reduced efficiency as compared to camostat mesylate and was rapidly generated in the presence of serum. Importantly, the infection experiments in which camostat mesylate was identified as a SARS-CoV-2 inhibitor involved preincubation of target cells with camostat mesylate in the presence of serum for 2 h and thus allowed conversion of camostat mesylate into GBPA. Indeed, when the antiviral activities of GBPA and camostat mesylate were compared in this setting, no major differences were identified. Our results indicate that use of TMPRSS2-related proteases for entry into target cells will not render SARS-CoV-2 camostat mesylate resistant. Moreover, the present and previous findings suggest that the peak concentrations of GBPA established after the clinically approved camostat mesylate dose (600 mg/day) will result in antiviral activity.

13.
Nature ; 585(7826): 588-590, 2020 09.
Article En | MEDLINE | ID: mdl-32698190

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been associated with more than 780,000 deaths worldwide (as of 20 August 2020). To develop antiviral interventions quickly, drugs used for the treatment of unrelated diseases are currently being repurposed to treat COVID-19. Chloroquine is an anti-malaria drug that is used for the treatment of COVID-19 as it inhibits the spread of SARS-CoV-2 in the African green monkey kidney-derived cell line Vero1-3. Here we show that engineered expression of TMPRSS2, a cellular protease that activates SARS-CoV-2 for entry into lung cells4, renders SARS-CoV-2 infection of Vero cells insensitive to chloroquine. Moreover, we report that chloroquine does not block infection with SARS-CoV-2 in the TMPRSS2-expressing human lung cell line Calu-3. These results indicate that chloroquine targets a pathway for viral activation that is not active in lung cells and is unlikely to protect against the spread of SARS-CoV-2 in and between patients.


Chloroquine/pharmacology , Chloroquine/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Lung/cytology , Lung/drug effects , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Animals , Betacoronavirus/drug effects , COVID-19 , Cell Line , Chlorocebus aethiops , Humans , In Vitro Techniques , Lung/virology , Pandemics , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Treatment Failure , Vero Cells , Virus Internalization , COVID-19 Drug Treatment
14.
J Virol ; 92(9)2018 05 01.
Article En | MEDLINE | ID: mdl-29444945

Human cytomegalovirus (HCMV) is a widespread human pathogen that causes asymptomatic infection in healthy individuals but poses a serious threat to immunocompromised patients. During the late phase of HCMV infection, the viral capsid is transported to the cytoplasmic viral assembly center (cVAC), where it is enclosed by the tegument protein layer and the viral envelope. The cVAC consists of circularly arranged vesicles from the trans-Golgi and endosomal networks. The HCMV gene UL35 encodes ppUL35 and its shorter form, ppUL35A. We have previously shown that the UL35 gene is involved in HCMV assembly, but it is unknown how UL35 proteins regulate viral assembly. Here we show that sorting nexin 5 (SNX5), a component of the retromer and part of the retrograde transport pathway, interacts with UL35 proteins. Expression of wild-type proteins but not mutants defective in SNX5 binding resulted in the cellular redistribution of the cation-independent mannose-6-phosphate receptor (CI-M6PR), indicating that UL35 proteins bind and negatively regulate SNX5 to modulate cellular transport pathways. Furthermore, binding of UL35 proteins to SNX5 was required for efficient viral replication and for transport of the most abundant HCMV glycoprotein B (gB; gpUL55) to the cVAC. These results indicate that ppUL35 and ppUL35A control the localization of the essential gB through the regulation of a retrograde transport pathway. Thus, this work is the first to define a molecular interaction between a tegument protein and a vesicular transport factor to regulate glycoprotein localization.IMPORTANCE Human cytomegalovirus is ubiquitously present in the healthy population, but reactivation or reinfection can cause serious, life-threatening infections in immunocompromised patients. For completion of its lytic cycle, human cytomegalovirus induces formation of an assembly center where mature virus particles are formed from multiple viral proteins. Viral glycoproteins use separate vesicular pathways for transport to the assembly center, which are incompletely understood. Our research identified a viral structural protein which affects the localization of one of the major glycoproteins. We could link this change in glycoprotein localization to an interaction of the structural protein with a cellular protein involved in regulation of vesicle transport. This increases our understanding of how the virus intersects into cellular regulatory pathways to enhance its own replication.


Cytomegalovirus/physiology , Sorting Nexins/metabolism , Viral Envelope Proteins/metabolism , Viral Proteins/metabolism , Virus Assembly/physiology , A549 Cells , Cell Line, Tumor , Gene Expression Regulation, Viral , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions , Humans , Protein Binding , Protein Transport/physiology , Receptor, IGF Type 2/metabolism , Virus Replication
15.
PLoS One ; 12(6): e0179177, 2017.
Article En | MEDLINE | ID: mdl-28636671

The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated.


Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , HEK293 Cells , Host-Pathogen Interactions , Humans , Mutation/genetics , Protein Transport , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
16.
PLoS One ; 11(11): e0166013, 2016.
Article En | MEDLINE | ID: mdl-27855227

The severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging, highly pathogenic bunyavirus against which neither antivirals nor vaccines are available. The SFTSV glycoproteins, Gn and Gc, facilitate viral entry into host cells. Gn and Gc are generated from a precursor protein, Gn/Gc, but it is currently unknown how the precursor is converted into the single proteins and whether this process is required for viral infectivity. Employing a rhabdoviral pseudotyping system, we demonstrate that a predicted signal sequence at the N-terminus of Gc is required for Gn/Gc processing and viral infectivity while potential proprotein convertase cleavage sites in Gc are dispensable. Moreover, we show that expression of Gn or Gc alone is not sufficient for host cell entry while particles bearing both proteins are infectious, and we provide evidence that Gn facilitates Golgi transport and virion incorporation of Gc. Collectively, these results suggest that signal peptidase liberates mature Gc from the Gn/Gc precursor and that this process is essential for viral infectivity and thus constitutes a potential target for antiviral intervention.


Phlebotomus Fever/virology , Phlebovirus/physiology , Polyproteins/metabolism , Protein Sorting Signals , Viral Envelope Proteins/metabolism , Amino Acid Motifs , Animals , Cell Line , Endoplasmic Reticulum/metabolism , Gene Expression , Glycoproteins , Golgi Apparatus/metabolism , Humans , Phlebovirus/pathogenicity , Polyproteins/chemistry , Polyproteins/genetics , Protein Precursors/genetics , Protein Precursors/metabolism , Protein Transport , Proteolysis , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Virus Assembly , Virus Internalization
17.
PLoS One ; 10(9): e0138380, 2015.
Article En | MEDLINE | ID: mdl-26379044

The cellular protease TMPRSS2 cleaves and activates the influenza virus hemagglutinin (HA) and TMPRSS2 expression is essential for viral spread and pathogenesis in mice. Moreover, severe acute respiratory syndrome coronavirus (SARS-CoV) and other respiratory viruses are activated by TMPRSS2. However, previous studies on viral activation by TMPRSS2 focused on a 492 amino acids comprising form of the protein (isoform 2) while other TMPRSS2 isoforms, generated upon alternative splicing of the tmprss2 mRNA, have not been characterized. Here, we show that the mRNA encoding a TMPRSS2 isoform with an extended N-terminal cytoplasmic domain (isoform 1) is expressed in lung-derived cell lines and tissues. Moreover, we demonstrate that TMPRSS2 isoform 1 colocalizes with HA and cleaves and activates HA. Finally, we show that isoform 1 activates the SARS-CoV spike protein for cathepsin L-independent entry into target cells. Our results indicate that TMPRSS2 isoform 1 is expressed in viral target cells and might contribute to viral activation in the host.


Protein Isoforms/metabolism , Serine Endopeptidases/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Animals , COS Cells , Caco-2 Cells , Cathepsins/metabolism , Cell Line , Chlorocebus aethiops , HEK293 Cells , Hemagglutinins/metabolism , Host-Pathogen Interactions/physiology , Humans , Lung/metabolism , Lung/virology , Orthomyxoviridae/metabolism , RNA, Messenger/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
18.
J Virol ; 89(18): 9178-88, 2015 Sep.
Article En | MEDLINE | ID: mdl-26109730

UNLABELLED: The expression of the antiviral host cell factor tetherin is induced by interferon and can inhibit the release of enveloped viruses from infected cells. The Vpu protein of HIV-1 antagonizes the antiviral activity of tetherin, and tetherin antagonists with Vpu-like activity have been identified in other viruses. In contrast, it is incompletely understood whether tetherin inhibits influenza A virus (FLUAV) release and whether FLUAV encodes tetherin antagonists. Here, we show that release of several laboratory-adapted FLUAV strains and a seasonal FLUAV strain is inhibited by tetherin, while pandemic FLUAV A/Hamburg/4/2009 is resistant. Studies with a virus-like particle system and analysis of reassortant viruses provided evidence that the viral hemagglutinin (HA) is an important determinant of tetherin antagonism but requires the presence of its cognate neuraminidase (NA) to inhibit tetherin. Finally, tetherin antagonism by FLUAV was dependent on the virion context, since retrovirus release from tetherin-positive cells was not rescued, and correlated with an HA- and NA-dependent reduction in tetherin expression. In sum, our study identifies HA and NA proteins of certain pandemic FLUAV as tetherin antagonists, which has important implications for understanding FLUAV pathogenesis. IMPORTANCE: Influenza A virus (FLUAV) infection is responsible for substantial global morbidity and mortality, and understanding how the virus evades the immune defenses of the host may uncover novel targets for antiviral intervention. Tetherin is an antiviral effector molecule of the innate immune system which can contribute to control of viral invasion. However, it has been unclear whether FLUAV is inhibited by tetherin and whether these viruses encode tetherin-antagonizing proteins. Our observation that several pandemic FLUAV strains can counteract tetherin via their HA and NA proteins identifies these proteins as novel tetherin antagonists and indicates that HA/NA-dependent inactivation of innate defenses may contribute to the efficient spread of pandemic FLUAV.


Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunity, Innate , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Neuraminidase/immunology , Antigens, CD/genetics , Antigens, CD/immunology , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , HEK293 Cells , HIV-1/genetics , HIV-1/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Human Immunodeficiency Virus Proteins/genetics , Human Immunodeficiency Virus Proteins/immunology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Neuraminidase/genetics , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/immunology
19.
J Infect Dis ; 212 Suppl 2: S247-57, 2015 Oct 01.
Article En | MEDLINE | ID: mdl-25877552

Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)-driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells.


Ebolavirus/metabolism , Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/virology , Macrophages/virology , Virulence Factors/metabolism , Cell Line , Glycoproteins/metabolism , HEK293 Cells , Humans , Lectins/metabolism , Virus Internalization
20.
J Infect Dis ; 212 Suppl 2: S172-80, 2015 Oct 01.
Article En | MEDLINE | ID: mdl-25840443

The ongoing Ebola virus (EBOV) disease (EVD) epidemic in Western Africa is the largest EVD outbreak recorded to date and requires the rapid development and deployment of antiviral measures. The viral glycoprotein (GP) facilitates host cell entry and, jointly with cellular interaction partners, constitutes a potential target for antiviral intervention. However, it is unknown whether the GPs of the currently and previously circulating EBOVs use the same mechanisms for cellular entry and are thus susceptible to inhibition by the same antivirals and cellular defenses. Here, we show that the GPs of the EBOVs circulating in 1976 and 2014 transduce the same spectrum of target cells, use the same cellular factors for host cell entry, and are comparably susceptible to blockade by antiviral interferon-induced transmembrane proteins and neutralizing antibody KZ52. Thus, the viruses responsible for the ongoing EVD epidemic should be fully susceptible to established antiviral strategies targeting GP and cellular entry factors.


Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/virology , Animals , Antibodies, Neutralizing/immunology , Antiviral Agents/pharmacology , COS Cells , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Democratic Republic of the Congo/epidemiology , Ebolavirus/drug effects , Ebolavirus/immunology , Ebolavirus/metabolism , Euphorbiaceae , Glycoproteins/immunology , Glycoproteins/metabolism , HEK293 Cells , HeLa Cells , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/immunology , Humans , Jurkat Cells , Macaca mulatta , Membrane Proteins/immunology , Membrane Proteins/metabolism , Sierra Leone/epidemiology , Vero Cells , Viral Proteins/immunology , Viral Proteins/metabolism , Virus Internalization
...