Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38948836

RESUMEN

Cirrhosis, advanced liver disease, affects 2-5 million Americans. While most patients have compensated cirrhosis and may be fairly asymptomatic, many decompensate and experience life-threatening complications such as gastrointestinal bleeding, confusion (hepatic encephalopathy), and ascites, reducing life expectancy from 12 to less than 2 years. Among patients with compensated cirrhosis, identifying patients at high risk of decompensation is critical to optimize care and reduce morbidity and mortality. Therefore, it is important to preferentially direct them towards specialty care which cannot be provided to all patients with cirrhosis. We used discovery Top-down Proteomics (TDP) to identify differentially expressed proteoforms (DEPs) in the plasma of patients with progressive stages of liver cirrhosis with the ultimate goal to identify candidate biomarkers of disease progression. In this pilot study, we identified 209 DEPs across three stages of cirrhosis (compensated, compensated with portal hypertension, and decompensated), of which 115 derived from proteins enriched in the liver at a transcriptional level and discriminated the three stages of cirrhosis. Enrichment analyses demonstrated DEPs are involved in several metabolic and immunological processes known to be impacted by cirrhosis progression. We have preliminarily defined the plasma proteoform signatures of cirrhosis patients, setting the stage for ongoing discovery and validation of biomarkers for early diagnosis, risk stratification, and disease monitoring. Highlights: Performed a pilot top-down LC-MS/MS analysis to identify proteoforms (PFRs) in the plasma of patients with 3 progressive stages of liver cirrhosis.Identified 2867 proteoforms (PFRs) and 209 differentially regulated proteoforms (DRPs) in the different stages of the disease.Identified DRP profiles able to potentially distinguish early from late stages of the disease, including 115 liver-derived DRPs.Fibrinogen alpha chain, haptoglobin, and Apo A-I are the proteins with the highest number of DRPs and represent potential candidate biomarkers of liver cirrhosis progression.

2.
J Proteome Res ; 23(6): 1883-1893, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38497708

RESUMEN

We introduce single cell Proteoform imaging Mass Spectrometry (scPiMS), which realizes the benefit of direct solvent extraction and MS detection of intact proteins from single cells dropcast onto glass slides. Sampling and detection of whole proteoforms by individual ion mass spectrometry enable a scalable approach to single cell proteomics. This new scPiMS platform addresses the throughput bottleneck in single cell proteomics and boosts the cell processing rate by several fold while accessing protein composition with higher coverage.


Asunto(s)
Espectrometría de Masas , Proteómica , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Proteómica/métodos , Humanos , Espectrometría de Masas/métodos , Proteoma/análisis
3.
Anal Chem ; 96(11): 4455-4462, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38458998

RESUMEN

The functions of proteins bearing multiple post-translational modifications (PTMs) are modulated by their modification patterns, yet precise characterization of them is difficult. MEK1 (also known as MAP2K1) is one such example that acts as a gatekeeper of the mitogen-activating protein kinase (MAPK) pathway and propagates signals via phosphorylation by upstream kinases. In principle, top-down mass spectrometry can precisely characterize whole MEK1 proteoforms, but fragmentation methods that would enable the site-specific characterization of labile modifications on 43 kDa protein ions result in overly dense tandem mass spectra. By using the charge-detection method called individual ion mass spectrometry, we demonstrate how complex mixtures of phosphoproteoforms and their fragment ions can be reproducibly handled to provide a "bird's eye" view of signaling activity through mapping proteoform landscapes in a pathway. Using this approach, the overall stoichiometry and distribution of 0-4 phosphorylations on MEK1 was determined in a cellular model of drug-resistant metastatic melanoma. This approach can be generalized to other multiply modified proteoforms, for which PTM combinations are key to their function and drug action.


Asunto(s)
Mitógenos , Proteínas Quinasas , Espectrometría de Masas en Tándem/métodos , Procesamiento Proteico-Postraduccional , Péptidos y Proteínas de Señalización Intercelular , Iones
5.
Nat Commun ; 14(1): 6478, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838706

RESUMEN

The molecular identification of tissue proteoforms by top-down mass spectrometry (TDMS) is significantly limited by throughput and dynamic range. We introduce AutoPiMS, a single-ion MS based multiplexed workflow for top-down tandem MS (MS2) directly from tissue microenvironments in a semi-automated manner. AutoPiMS directly off human ovarian cancer sections allowed for MS2 identification of 73 proteoforms up to 54 kDa at a rate of <1 min per proteoform. AutoPiMS is directly interfaced with multifaceted proteoform imaging MS data modalities for the identification of proteoform signatures in tumor and stromal regions in ovarian cancer biopsies. From a total of ~1000 proteoforms detected by region-of-interest label-free quantitation, we discover 303 differential proteoforms in stroma versus tumor from the same patient. 14 of the top proteoform signatures are corroborated by MSI at 20 micron resolution including the differential localization of methylated forms of CRIP1, indicating the importance of proteoform-enabled spatial biology in ovarian cancer.


Asunto(s)
Neoplasias Ováricas , Proteoma , Humanos , Femenino , Proteoma/análisis , Neoplasias Ováricas/diagnóstico por imagen , Espectrometría de Masas en Tándem/métodos , Programas Informáticos , Microambiente Tumoral
6.
Annu Rev Biomed Data Sci ; 6: 357-376, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37561601

RESUMEN

Alternative splicing is pivotal to the regulation of gene expression and protein diversity in eukaryotic cells. The detection of alternative splicing events requires specific omics technologies. Although short-read RNA sequencing has successfully supported a plethora of investigations on alternative splicing, the emerging technologies of long-read RNA sequencing and top-down mass spectrometry open new opportunities to identify alternative splicing and protein isoforms with less ambiguity. Here, we summarize improvements in short-read RNA sequencing for alternative splicing analysis, including percent splicing index estimation and differential analysis. We also review the computational methods used in top-down proteomics analysis regarding proteoform identification, including the construction of databases of protein isoforms and statistical analyses of search results. While many improvements in sequencing and computational methods will result from emerging technologies, there should be future endeavors to increase the effectiveness, integration, and proteome coverage of alternative splicing events.


Asunto(s)
Proteómica , Transcriptoma , Proteómica/métodos , Transcriptoma/genética , Isoformas de Proteínas/genética , Empalme Alternativo/genética , Empalme del ARN
7.
J Proteome Res ; 21(12): 2987-2997, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36343328

RESUMEN

SARS-CoV-2 Omicron (B.1.1.529) and its subvariants are currently the most common variants of concern worldwide, featuring numerous mutations in the spike protein and elsewhere that collectively make Omicron variants more transmissible and more resistant to antibody-mediated neutralization provided by vaccination, previous infections, and monoclonal antibody therapies than their predecessors. We recently reported the creation and characterization of Ig-MS, a new mass spectrometry-based serology platform that can define the repertoire of antibodies against an antigen of interest at single proteoform resolution. Here, we applied Ig-MS to investigate the evolution of plasma antibody repertoires against the receptor-binding domain (RBD) of SARS-CoV-2 in response to the booster shot and natural viral infection. We also assessed the capacity for antibody repertoires generated in response to vaccination and/or infection with the Omicron variant to bind to both Wuhan- and Omicron-RBDs. Our results show that (1) the booster increases antibody titers against both Wuhan- and Omicron- RBDs and elicits an Omicron-specific response and (2) vaccination and infection act synergistically in generating anti-RBD antibody repertoires able to bind both Wuhan- and Omicron-RBDs with variant-specific antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticuerpos , Inmunoterapia , Anticuerpos Antivirales
8.
Sci Adv ; 8(32): eabp9929, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35947651

RESUMEN

Imaging of proteoforms in human tissues is hindered by low molecular specificity and limited proteome coverage. Here, we introduce proteoform imaging mass spectrometry (PiMS), which increases the size limit for proteoform detection and identification by fourfold compared to reported methods and reveals tissue localization of proteoforms at <80-µm spatial resolution. PiMS advances proteoform imaging by combining ambient nanospray desorption electrospray ionization with ion detection using individual ion mass spectrometry. We demonstrate highly multiplexed proteoform imaging of human kidney, annotating 169 of 400 proteoforms of <70 kDa using top-down MS and a database lookup of ~1000 kidney candidate proteoforms, including dozens of key enzymes in primary metabolism. PiMS images reveal distinct spatial localizations of proteoforms to both anatomical structures and cellular neighborhoods in the vasculature, medulla, and cortex regions of the human kidney. The benefits of PiMS are poised to increase proteome coverage for label-free protein imaging of tissues.

9.
Nucleic Acids Res ; 50(D1): D526-D533, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34986596

RESUMEN

The Human Proteoform Atlas (HPfA) is a web-based repository of experimentally verified human proteoforms on-line at http://human-proteoform-atlas.org and is a direct descendant of the Consortium of Top-Down Proteomics' (CTDP) Proteoform Atlas. Proteoforms are the specific forms of protein molecules expressed by our cells and include the unique combination of post-translational modifications (PTMs), alternative splicing and other sources of variation deriving from a specific gene. The HPfA uses a FAIR system to assign persistent identifiers to proteoforms which allows for redundancy calling and tracking from prior and future studies in the growing community of proteoform biology and measurement. The HPfA is organized around open ontologies and enables flexible classification of proteoforms. To achieve this, a public registry of experimentally verified proteoforms was also created. Submission of new proteoforms can be processed through email vianrtdphelp@northwestern.edu, and future iterations of these proteoform atlases will help to organize and assign function to proteoforms, their PTMs and their complexes in the years ahead.


Asunto(s)
Empalme Alternativo , Bases de Datos de Proteínas , Procesamiento Proteico-Postraduccional , Proteoma/química , Proteínas Proto-Oncogénicas p21(ras)/química , Interfaz Usuario-Computador , Secuencia de Aminoácidos , Atlas como Asunto , Ontología de Genes , Humanos , Modelos Moleculares , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/clasificación , Proteoma/genética , Proteoma/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
J Proteome Res ; 21(1): 274-288, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34878788

RESUMEN

Methods of antibody detection are used to assess exposure or immunity to a pathogen. Here, we present Ig-MS, a novel serological readout that captures the immunoglobulin (Ig) repertoire at molecular resolution, including entire variable regions in Ig light and heavy chains. Ig-MS uses recent advances in protein mass spectrometry (MS) for multiparametric readout of antibodies, with new metrics like Ion Titer (IT) and Degree of Clonality (DoC) capturing the heterogeneity and relative abundance of individual clones without sequencing of B cells. We applied Ig-MS to plasma from subjects with severe and mild COVID-19 and immunized subjects after two vaccine doses, using the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 as the bait for antibody capture. Importantly, we report a new data type for human serology, that could use other antigens of interest to gauge immune responses to vaccination, pathogens, or autoimmune disorders.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Espectrometría de Masas , Glicoproteína de la Espiga del Coronavirus/genética
11.
Appl Magn Reson ; 52(8): 959-970, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776648

RESUMEN

Structural investigations of proteins and their biological complexes are now frequently complemented by distance constraints between spin labeled cysteines generated using double electron-electron resonance (DEER) spectroscopy, via site directed spin labeling (SDSL). Methanethiosulfonate spin label (MTSSL), has become ubiquitous in the SDSL of proteins, however, has limitations owing to its high number of rotamers, and reducibility. In this article we introduce the use of bromoacrylaldehyde spin label (BASL) as a cysteine spin label, demonstrating an advantage over MTSSL due to its increased selectivity for surface cysteines, eliminating the need to 'knock out' superfluous cysteine residues. Applied to the multidomain protein, His domain protein tyrosine phosphatase (HD-PTP), we show that BASL can be easily added in excess with selective labeling, whereas MTSSL causes protein precipitation. Furthermore, using DEER, we were able to measure a single cysteine pair distance in a three cysteine domain within HD-PTP. The label has a further advantage of comprising a sulfide in a three-bond tether, making it a candidate for protein binding and in-cell studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00723-021-01350-1.

12.
medRxiv ; 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34268518

RESUMEN

Methods of antibody detection are used to assess exposure or immunity to a pathogen. Here, we present Ig-MS , a novel serological readout that captures the immunoglobulin (Ig) repertoire at molecular resolution, including entire variable regions in Ig light and heavy chains. Ig-MS uses recent advances in protein mass spectrometry (MS) for multi-parametric readout of antibodies, with new metrics like Ion Titer (IT) and Degree of Clonality (DoC) capturing the heterogeneity and relative abundance of individual clones without sequencing of B cells. We apply Ig-MS to plasma from subjects with severe & mild COVID-19, using the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 as the bait for antibody capture. Importantly, we report a new data type for human serology, with compatibility to any recombinant antigen to gauge our immune responses to vaccination, pathogens, or autoimmune disorders.

13.
Redox Biol ; 32: 101486, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32155582

RESUMEN

Oxidative stress induced by lipid peroxidation products (LPP) accompanies aging and has been hypothesized to exacerbate the secondary cascade in traumatic brain injury (TBI). Increased oxidative stress is a contributor to loss of neural reserve that defines the ability to maintain healthy cognitive function despite the accumulation of neuropathology. ALDH2-/- mice are unable to clear aldehyde LPP by mitochondrial aldehyde dehydrogenase-2 (Aldh2) detoxification and provide a model to study mild TBI (mTBI), therapeutic interventions, and underlying mechanisms. The ALDH2-/- mouse model presents with elevated LPP-mediated protein modification, lowered levels of PSD-95, PGC1-α, and SOD-1, and mild cognitive deficits from 4 months of age. LPP scavengers are neuroprotective in vitro and in ALDH2-/- mice restore cognitive performance. A single-hit, closed skull mTBI failed to elicit significant effects in WT mice; however, ALDH2-/- mice showed a significant inflammatory cytokine surge in the ipsilateral hemisphere 24 h post-mTBI, and increased GFAP cleavage, a biomarker for TBI. Known neuroprotective agents, were able to reverse the effects of mTBI. This new preclinical model of mTBI, incorporating significant perturbations in behavior, inflammation, and clinically relevant biomarkers, allows mechanistic study of the interaction of LPP and neurotrauma in loss of neural reserve.


Asunto(s)
Conmoción Encefálica , Fármacos Neuroprotectores , Aldehído Deshidrogenasa Mitocondrial/genética , Animales , Modelos Animales de Enfermedad , Ratones , Estrés Oxidativo
14.
J Med Chem ; 62(24): 11301-11323, 2019 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-31746603

RESUMEN

The clinical steroidal selective estrogen receptor (ER) degrader (SERD), fulvestrant, is effective in metastatic breast cancer, but limited by poor pharmacokinetics, prompting the development of orally bioavailable, nonsteroidal SERDs, currently in clinical trials. These trials address local breast cancer as well as peripheral metastases, but patients with brain metastases are generally excluded because of the lack of blood-brain barrier penetration. A novel family of benzothiophene SERDs with a basic amino side arm (B-SERDs) was synthesized. Proteasomal degradation of ERα was induced by B-SERDs that achieved the objectives of oral and brain bioavailability, while maintaining high affinity binding to ERα and both potency and efficacy comparable to fulvestrant in cell lines resistant to endocrine therapy or bearing ESR1 mutations. A novel 3-oxyazetidine side chain was designed, leading to 37d, a B-SERD that caused endocrine-resistant ER+ tumors to regress in a mouse orthotopic xenograft model.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Diseño de Fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Proteolisis/efectos de los fármacos , Moduladores Selectivos de los Receptores de Estrógeno/síntesis química , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tiofenos/síntesis química , Tiofenos/farmacología , Animales , Apoptosis , Inhibidores de la Aromatasa/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Mutación , Ratas , Ratas Sprague-Dawley , Moduladores Selectivos de los Receptores de Estrógeno/farmacocinética , Tiofenos/química , Tiofenos/farmacocinética , Distribución Tisular , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Nitric Oxide ; 82: 59-74, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30394348

RESUMEN

The development of small molecule modulators of NO/cGMP signaling for use in the CNS has lagged far behind the use of such clinical agents in the periphery, despite the central role played by NO/cGMP in learning and memory, and the substantial evidence that this signaling pathway is perturbed in neurodegenerative disorders, including Alzheimer's disease. The NO-chimeras, NMZ and Nitrosynapsin, have yielded beneficial and disease-modifying responses in multiple preclinical animal models, acting on GABAA and NMDA receptors, respectively, providing additional mechanisms of action relevant to synaptic and neuronal dysfunction. Several inhibitors of cGMP-specific phosphodiesterases (PDE) have replicated some of the actions of these NO-chimeras in the CNS. There is no evidence that nitrate tolerance is a phenomenon relevant to the CNS actions of NO-chimeras, and studies on nitroglycerin in the periphery continue to challenge the dogma of nitrate tolerance mechanisms. Hybrid nitrates have shown much promise in the periphery and CNS, but to date only one treatment has received FDA approval, for glaucoma. The potential for allosteric modulation of soluble guanylate cyclase (sGC) in brain disorders has not yet been fully explored nor exploited; whereas multiple applications of PDE inhibitors have been explored and many have stalled in clinical trials.


Asunto(s)
Fármacos del Sistema Nervioso Central/farmacología , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/metabolismo , GMP Cíclico/metabolismo , Descubrimiento de Drogas , Óxido Nítrico/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Fármacos del Sistema Nervioso Central/síntesis química , Fármacos del Sistema Nervioso Central/química , Humanos , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química
16.
Angew Chem Int Ed Engl ; 56(46): 14498-14501, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-28940631

RESUMEN

Carboxylic acid reductases (CARs) catalyze the reduction of a broad range of carboxylic acids to aldehydes using the cofactors adenosine triphosphate and nicotinamide adenine dinucleotide phosphate, and have become attractive biocatalysts for organic synthesis. Mechanistic understanding of CARs was used to expand reaction scope, generating biocatalysts for amide bond formation from carboxylic acid and amine. CARs demonstrated amidation activity for various acids and amines. Optimization of reaction conditions, with respect to pH and temperature, allowed for the synthesis of the anticonvulsant ilepcimide with up to 96 % conversion. Mechanistic studies using site-directed mutagenesis suggest that, following initial enzymatic adenylation of substrates, amidation of the carboxylic acid proceeds by direct reaction of the acyl adenylate with amine nucleophiles.

17.
Angew Chem Int Ed Engl ; 56(32): 9449-9453, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28570782

RESUMEN

In situ monitoring of biomolecular recognition, especially at surfaces, still presents a significant technical challenge. Electron paramagnetic resonance (EPR) of biomolecules spin-labeled with nitroxides can offer uniquely sensitive and selective insights into these processes, but new spin-labeling strategies are needed. The synthesis and study of a bromoacrylaldehyde spin label (BASL), which features two attachment points with orthogonal reactivity is reported. The first examples of mannose and biotin ligands coupled to aqueous carboxy-functionalized gold nanoparticles through a spin label are presented. EPR spectra were obtained for the spin-labeled ligands both free in solution and attached to nanoparticles. The labels were recognized by the mannose-binding lectin, Con A, and the biotin-binding protein avidin-peroxidase. Binding gave quantifiable changes in the EPR spectra from which binding profiles could be obtained that reflect the strength of binding in each case.

18.
Molecules ; 19(10): 16998-7025, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25342554

RESUMEN

Spin labelling is a chemical technique that enables the integration of a molecule containing an unpaired electron into another framework for study. Given the need to understand the structure, dynamics, and conformational changes of biomacromolecules, spin labelling provides a relatively non-intrusive technique and has certain advantages over X-ray crystallography; which requires high quality crystals. The technique relies on the design of binding probes that target a functional group, for example, the thiol group of a cysteine residue within a protein. The unpaired electron is typically supplied through a nitroxide radical and sterically shielded to preserve stability. Pulsed electron paramagnetic resonance (EPR) techniques allow small magnetic couplings to be measured (e.g., <50 MHz) providing information on single label probes or the dipolar coupling between multiple labels. In particular, distances between spin labels pairs can be derived which has led to many protein/enzymes and nucleotides being studied. Here, we summarise recent examples of spin labels used for pulse EPR that serve to illustrate the contribution of chemistry to advancing discoveries in this field.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Sustancias Macromoleculares/química , Marcadores de Spin , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...