Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
ACS Chem Biol ; 17(9): 2595-2604, 2022 09 16.
Article En | MEDLINE | ID: mdl-36044633

Although current antiretroviral therapy can control HIV-1 replication and prevent disease progression, it is not curative. Identifying mechanisms that can lead to eradication of persistent viral reservoirs in people living with HIV-1 (PLWH) remains an outstanding challenge to achieving cure. Utilizing a phenotypic screen, we identified a novel chemical class capable of killing HIV-1 infected peripheral blood mononuclear cells. Tool compounds ICeD-1 and ICeD-2 ("inducer of cell death-1 and 2"), optimized for potency and selectivity from screening hits, were used to deconvolute the mechanism of action using a combination of chemoproteomic, biochemical, pharmacological, and genetic approaches. We determined that these compounds function by modulating dipeptidyl peptidase 9 (DPP9) and activating the caspase recruitment domain family member 8 (CARD8) inflammasome. Efficacy of ICeD-1 and ICeD-2 was dependent on HIV-1 protease activity and synergistic with efavirenz, which promotes premature activation of HIV-1 protease at high concentrations in infected cells. This in vitro synergy lowers the efficacious cell kill concentration of efavirenz to a clinically relevant dose at concentrations of ICeD-1 or ICeD-2 that do not result in complete DPP9 inhibition. These results suggest engagement of the pyroptotic pathway as a potential approach to eliminate HIV-1 infected cells.


HIV Infections , HIV-1 , Alkynes , Benzoxazines , CARD Signaling Adaptor Proteins/metabolism , Cyclopropanes , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , HIV Infections/drug therapy , HIV-1/metabolism , Humans , Inflammasomes/metabolism , Leukocytes, Mononuclear , Neoplasm Proteins/metabolism
2.
Nat Commun ; 12(1): 815, 2021 02 05.
Article En | MEDLINE | ID: mdl-33547286

Narcolepsy type 1 (NT1) is a chronic neurological disorder that impairs the brain's ability to control sleep-wake cycles. Current therapies are limited to the management of symptoms with modest effectiveness and substantial adverse effects. Agonists of the orexin receptor 2 (OX2R) have shown promise as novel therapeutics that directly target the pathophysiology of the disease. However, identification of drug-like OX2R agonists has proven difficult. Here we report cryo-electron microscopy structures of active-state OX2R bound to an endogenous peptide agonist and a small-molecule agonist. The extended carboxy-terminal segment of the peptide reaches into the core of OX2R to stabilize an active conformation, while the small-molecule agonist binds deep inside the orthosteric pocket, making similar key interactions. Comparison with antagonist-bound OX2R suggests a molecular mechanism that rationalizes both receptor activation and inhibition. Our results enable structure-based discovery of therapeutic orexin agonists for the treatment of NT1 and other hypersomnia disorders.


Aminopyridines/chemistry , Azepines/chemistry , Orexin Receptor Antagonists/chemistry , Orexin Receptors/chemistry , Peptides/chemistry , Sleep Aids, Pharmaceutical/chemistry , Sulfonamides/chemistry , Triazoles/chemistry , Aminopyridines/metabolism , Azepines/metabolism , Binding Sites , Cloning, Molecular , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Molecular Dynamics Simulation , Orexin Receptor Antagonists/metabolism , Orexin Receptors/agonists , Orexin Receptors/metabolism , Peptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sleep Aids, Pharmaceutical/metabolism , Sulfonamides/metabolism , Triazoles/metabolism
4.
Nature ; 544(7650): 327-332, 2017 04 20.
Article En | MEDLINE | ID: mdl-28379944

The angiotensin II receptors AT1R and AT2R serve as key components of the renin-angiotensin-aldosterone system. AT1R has a central role in the regulation of blood pressure, but the function of AT2R is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human AT2R bound to an AT2R-selective ligand and to an AT1R/AT2R dual ligand, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position, stabilizing the active-like state, but at the same time preventing the recruitment of G proteins or ß-arrestins, in agreement with the lack of signalling responses in standard cellular assays. Structure-activity relationship, docking and mutagenesis studies revealed the crucial interactions for ligand binding and selectivity. Our results thus provide insights into the structural basis of the distinct functions of the angiotensin receptors, and may guide the design of new selective ligands.


Models, Molecular , Receptor, Angiotensin, Type 2/chemistry , Receptor, Angiotensin, Type 2/metabolism , Angiotensin II Type 2 Receptor Blockers/chemistry , Angiotensin II Type 2 Receptor Blockers/metabolism , Binding Sites/genetics , Crystallography, X-Ray , Drug Design , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Ligands , Molecular Docking Simulation , Mutation , Protein Binding , Protein Conformation , Receptor, Angiotensin, Type 1/chemistry , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/agonists , Receptor, Angiotensin, Type 2/genetics , Signal Transduction , Structure-Activity Relationship , Substrate Specificity/genetics , beta-Arrestins/metabolism
5.
Curr Mol Pharmacol ; 10(4): 334-344, 2017.
Article En | MEDLINE | ID: mdl-28183242

The structural analysis of class B G protein-coupled receptors (GPCR), cell surface proteins responding to peptide hormones, has until recently been restricted to the extracellular domain (ECD). Corticotropin-releasing factor receptor type 1 (CRF1R) is a class B receptor mediating stress response and also considered a drug target for depression and anxiety. Here we report the crystal structure of the transmembrane domain of human CRF1R in complex with the small-molecule antagonist CP-376395 in a hexagonal setting with translational non-crystallographic symmetry. Molecular dynamics and metadynamics simulations on this novel structure and the existing TMD structure for CRF1R provides insight as to how the small molecule ligand gains access to the induced-fit allosteric binding site with implications for the observed selectivity against CRF2R. Furthermore, molecular dynamics simulations performed using a full-length receptor model point to key interactions between the ECD and extracellular loop 3 of the TMD providing insight into the full inactive state of multidomain class B GPCRs.


Receptors, Corticotropin-Releasing Hormone/chemistry , Allosteric Site , Aminopyridines/pharmacology , Binding Sites , Crystallography, X-Ray/methods , Humans , Molecular Dynamics Simulation , Protein Conformation , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Receptors, Corticotropin-Releasing Hormone/metabolism
6.
Sci Rep ; 5: 11954, 2015 Jul 10.
Article En | MEDLINE | ID: mdl-26159865

Recent technical advances have greatly facilitated G-protein coupled receptors crystallography as evidenced by the number of successful x-ray structures that have been reported recently. These technical advances include novel detergents, specialised crystallography techniques as well as protein engineering solutions such as fusions and conformational thermostabilisation. Using conformational thermostabilisation, it is possible to generate variants of GPCRs that exhibit significantly increased stability in detergent micelles whilst preferentially occupying a single conformation. In this paper we describe for the first time the application of this technique to a member of a class B GPCR, the corticotropin releasing factor receptor 1 (CRF1R). Mutational screening in the presence of the inverse agonist, CP-376395, resulted in the identification of a construct with twelve point mutations that exhibited significantly increased thermal stability in a range of detergents. We further describe the subsequent construct engineering steps that eventually yielded a crystallisation-ready construct which recently led to the solution of the first x-ray structure of a class B receptor. Finally, we have used molecular dynamic simulation to provide structural insight into CRF1R instability as well as the stabilising effects of the mutants, which may be extended to other class B receptors considering the high degree of structural conservation.


Aminopyridines/chemistry , Receptors, Corticotropin-Releasing Hormone/chemistry , Aminopyridines/metabolism , Binding Sites , Crystallography, X-Ray , Drug Inverse Agonism , HEK293 Cells , Half-Life , Humans , Molecular Dynamics Simulation , Mutagenesis , Protein Stability , Protein Structure, Tertiary , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism
7.
Br J Pharmacol ; 171(13): 3132-45, 2014 Jul.
Article En | MEDLINE | ID: mdl-24628305

Class B GPCRs of the secretin family are important drug targets in many human diseases including diabetes, neurodegeneration, cardiovascular disease and psychiatric disorders. X-ray crystal structures for the glucagon receptor and corticotropin-releasing factor receptor 1 have now been published. In this review, we analyse the new structures and how they compare with each other and with Class A and F receptors. We also consider the differences in druggability and possible similarity in the activation mechanisms. Finally, we discuss the potential for the design of small-molecule modulators for these important targets in drug discovery. This new structural insight allows, for the first time, structure-based drug design methods to be applied to Class B GPCRs.


Drug Design , Receptors, G-Protein-Coupled/chemistry , Receptors, Gastrointestinal Hormone/chemistry , Animals , Crystallography, X-Ray , Drug Discovery/methods , Humans , Molecular Targeted Therapy , Protein Conformation , Receptors, Corticotropin-Releasing Hormone/chemistry , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/metabolism , Receptors, Gastrointestinal Hormone/drug effects , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Glucagon/chemistry
8.
Trends Pharmacol Sci ; 35(1): 12-22, 2014 Jan.
Article En | MEDLINE | ID: mdl-24359917

The secretin-like (class B) family of G protein-coupled receptors (GPCRs) are key players in hormonal homeostasis and are interesting drug targets for the treatment of several metabolic disorders (such as type 2 diabetes, osteoporosis, and obesity) and nervous system diseases (such as migraine, anxiety, and depression). The recently solved crystal structures of the transmembrane domains of the human glucagon receptor and human corticotropin-releasing factor receptor 1 have opened up new opportunities to study the structure and function of class B GPCRs. The current review shows how these structures offer more detailed explanations to previous biochemical and pharmacological studies of class B GPCRs, and provides new insights into their interactions with ligands.


Receptors, G-Protein-Coupled/chemistry , Receptors, Gastrointestinal Hormone/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Protein Conformation
9.
Nature ; 499(7459): 438-43, 2013 Jul 25.
Article En | MEDLINE | ID: mdl-23863939

Structural analysis of class B G-protein-coupled receptors (GPCRs), cell-surface proteins that respond to peptide hormones, has been restricted to the amino-terminal extracellular domain, thus providing little understanding of the membrane-spanning signal transduction domain. The corticotropin-releasing factor receptor type 1 is a class B receptor which mediates the response to stress and has been considered a drug target for depression and anxiety. Here we report the crystal structure of the transmembrane domain of the human corticotropin-releasing factor receptor type 1 in complex with the small-molecule antagonist CP-376395. The structure provides detailed insight into the architecture of class B receptors. Atomic details of the interactions of the receptor with the non-peptide ligand that binds deep within the receptor are described. This structure provides a model for all class B GPCRs and may aid in the design of new small-molecule drugs for diseases of brain and metabolism.


Receptors, Corticotropin-Releasing Hormone/chemistry , Receptors, Corticotropin-Releasing Hormone/classification , Amino Acid Motifs , Amino Acid Sequence , Aminopyridines/chemistry , Aminopyridines/metabolism , Aminopyridines/pharmacology , Binding Sites , Conserved Sequence , Crystallography, X-Ray , HEK293 Cells , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Receptors, Corticotropin-Releasing Hormone/metabolism , Receptors, Dopamine D3/antagonists & inhibitors , Receptors, Dopamine D3/chemistry , Receptors, Dopamine D3/classification
10.
J Med Chem ; 55(5): 1898-903, 2012 Mar 08.
Article En | MEDLINE | ID: mdl-22220592

Potent, ligand efficient, selective, and orally efficacious 1,2,4-triazine derivatives have been identified using structure based drug design approaches as antagonists of the adenosine A(2A) receptor. The X-ray crystal structures of compounds 4e and 4g bound to the GPCR illustrate that the molecules bind deeply inside the orthosteric binding cavity. In vivo pharmacokinetic and efficacy data for compound 4k are presented, demonstrating the potential of this series of compounds for the treatment of Parkinson's disease.


Adenosine A2 Receptor Antagonists/chemical synthesis , Antiparkinson Agents/chemical synthesis , Pyridines/chemical synthesis , Receptor, Adenosine A2A/metabolism , Triazines/chemical synthesis , Adenosine A2 Receptor Antagonists/pharmacokinetics , Adenosine A2 Receptor Antagonists/pharmacology , Administration, Oral , Animals , Antiparkinson Agents/pharmacokinetics , Antiparkinson Agents/pharmacology , Crystallography, X-Ray , Drug Design , Humans , Models, Molecular , Protein Conformation , Pyridines/pharmacokinetics , Pyridines/pharmacology , Radioligand Assay , Rats , Structure-Activity Relationship , Surface Plasmon Resonance , Triazines/pharmacokinetics , Triazines/pharmacology
11.
Structure ; 19(9): 1283-93, 2011 Sep 07.
Article En | MEDLINE | ID: mdl-21885291

Methylxanthines, including caffeine and theophylline, are among the most widely consumed stimulant drugs in the world. These effects are mediated primarily via blockade of adenosine receptors. Xanthine analogs with improved properties have been developed as potential treatments for diseases such as Parkinson's disease. Here we report the structures of a thermostabilized adenosine A(2A) receptor in complex with the xanthines xanthine amine congener and caffeine, as well as the A(2A) selective inverse agonist ZM241385. The receptor is crystallized in the inactive state conformation as defined by the presence of a salt bridge known as the ionic lock. The complete third intracellular loop, responsible for G protein coupling, is visible consisting of extended helices 5 and 6. The structures provide new insight into the features that define the ligand binding pocket of the adenosine receptor for ligands of diverse chemotypes as well as the cytoplasmic regions that interact with signal transduction proteins.


Adenosine A2 Receptor Agonists/chemistry , Caffeine/chemistry , Receptor, Adenosine A2A/chemistry , Triazines/chemistry , Triazoles/chemistry , Xanthines/chemistry , Adenosine A2 Receptor Agonists/pharmacology , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Caffeine/pharmacology , Crystallography, X-Ray , HEK293 Cells , Humans , Hydrogen Bonding , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Protein Stability , Protein Structure, Tertiary , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/metabolism , Surface Properties , Triazines/pharmacology , Triazoles/pharmacology , Xanthines/pharmacology
12.
J Struct Biol ; 168(2): 267-77, 2009 Nov.
Article En | MEDLINE | ID: mdl-19591940

Chaperone-proteases are responsible for the processive breakdown of proteins in eukaryotic, archaeal and bacterial cells. They are composed of a cylinder-shaped protease lined on the interior with proteolytic sites and of ATPase rings that bind to the apical sides of the protease to control substrate entry. We present a real-time FRET-based method for probing the reaction cycle of chaperone-proteases, which consists of substrate unfolding, translocation into the protease and degradation. Using this system we show that the two alternative bacterial ClpAP and ClpXP complexes share the same mechanism: after initial tag recognition, fast unfolding of substrate occurs coinciding with threading through the chaperone. Subsequent slow substrate translocation into the protease chamber leads to formation of a transient compact substrate intermediate presumably close to the chaperone-protease interface. Our data for ClpX and ClpA support the mechanical unfolding mode of action proposed for these chaperones. The general applicability of the designed FRET system is demonstrated here using in addition an archaeal PAN-proteasome complex as model for the more complex eukaryotic proteasome.


Bacterial Proteins/chemistry , Endopeptidase Clp/chemistry , Fluorescence Resonance Energy Transfer/methods , Circular Dichroism , Models, Biological , Protein Structure, Secondary
13.
J Biol Inorg Chem ; 14(5): 663-72, 2009 Jun.
Article En | MEDLINE | ID: mdl-19234723

Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO(4) (2-)) and tungstate (WO(4) (2-)). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across the cell membrane. We have recently reported a crystal structure of the molybdate/tungstate binding protein ModA/WtpA from Archaeoglobus fulgidus, which revealed an octahedrally coordinated central metal atom. By contrast, the previously determined structures of three bacterial homologs showed tetracoordinate molybdenum and tungsten atoms in their binding pockets. Until then, coordination numbers above four had only been found for molybdenum/tungsten in metalloenzymes where these metal atoms are part of the catalytic cofactors and coordinated by mostly non-oxygen ligands. We now report a high-resolution structure of A. fulgidus ModA/WtpA, as well as crystal structures of four additional homologs, all bound to tungstate. These crystal structures match X-ray absorption spectroscopy measurements from soluble, tungstate-bound protein, and reveal the details of the distorted octahedral coordination. Our results demonstrate that the distorted octahedral geometry is not an exclusive feature of the A. fulgidus protein, and suggest distinct binding modes of the binding proteins from archaea and bacteria.


Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Archaeoglobus fulgidus/metabolism , Tungsten Compounds/chemistry , Tungsten Compounds/metabolism , Amino Acid Sequence , Archaeal Proteins/genetics , Archaeoglobus fulgidus/chemistry , Archaeoglobus fulgidus/genetics , Binding Sites , Crystallography, X-Ray , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Models, Molecular , Molecular Sequence Data , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/genetics , Protein Binding , Protein Conformation , Sequence Alignment
14.
Science ; 317(5843): 1387-90, 2007 Sep 07.
Article En | MEDLINE | ID: mdl-17673622

BtuCD is an adenosine triphosphate-binding cassette (ABC) transporter that translocates vitamin B12 from the periplasmic binding protein BtuF into the cytoplasm of Escherichia coli. The 2.6 angstrom crystal structure of a complex BtuCD-F reveals substantial conformational changes as compared with the previously reported structures of BtuCD and BtuF. The lobes of BtuF are spread apart, and B12 is displaced from the binding pocket. The transmembrane BtuC subunits reveal two distinct conformations, and the translocation pathway is closed to both sides of the membrane. Electron paramagnetic resonance spectra of spin-labeled cysteine mutants reconstituted in proteoliposomes are consistent with the conformation of BtuCD-F that was observed in the crystal structure. A comparison with BtuCD and the homologous HI1470/71 protein suggests that the structure of BtuCD-F may reflect a posttranslocation intermediate.


ATP-Binding Cassette Transporters/chemistry , Escherichia coli Proteins/chemistry , Periplasmic Binding Proteins/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Escherichia coli , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Recombinant Fusion Proteins/chemistry
15.
Curr Opin Struct Biol ; 17(4): 412-8, 2007 Aug.
Article En | MEDLINE | ID: mdl-17723295

ATP-binding cassette (ABC) transporters are ubiquitous membrane proteins that couple the transport of diverse substrates across cellular membranes to the hydrolysis of ATP. The crystal structures of four ABC transporters have recently been determined. They reveal similar arrangements of the conserved ATP-hydrolyzing nucleotide-binding domains, but unrelated architectures of the transmembrane domains, with the notable exception of a common 'coupling helix' that is essential for transmitting conformational changes. The structures suggest a mechanism that rationalizes ATP-driven transport: While binding of ATP appears to trigger an outward-facing conformation, dissociation of the hydrolysis products may promote an inward-facing conformation. This basic scheme can, in principle, explain nutrient import by ABC importers and drug extrusion by ABC exporters.


ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Animals , Binding Sites , Biological Transport , Crystallography, X-Ray , Humans , Models, Biological , Models, Molecular , Protein Conformation , Structure-Activity Relationship
16.
Mol Microbiol ; 65(2): 250-7, 2007 Jul.
Article En | MEDLINE | ID: mdl-17578454

ATP-binding cassette (ABC) transporters are integral membrane proteins that move diverse substrates across cellular membranes. ABC importers catalyse the uptake of essential nutrients from the environment, whereas ABC exporters facilitate the extrusion of various compounds, including drugs and antibiotics, from the cytoplasm. How ABC transporters couple ATP hydrolysis to the transport reaction has long remained unclear. The recent crystal structures of four complete ABC transporters suggest that a key step of the molecular mechanism is conserved in importers and exporters. Whereas binding of ATP promotes an outward-facing conformation, the release of the hydrolysis products ADP and phosphate promotes an inward-facing conformation. This basic scheme can in principle explain ATP-driven drug export and binding protein-dependent nutrient uptake.


ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Biological Transport , Crystallography, X-Ray , Protein Conformation
17.
Nature ; 446(7132): 213-6, 2007 Mar 08.
Article En | MEDLINE | ID: mdl-17322901

ATP-binding cassette (ABC) transporter proteins carry diverse substrates across cell membranes. Whereas clinically relevant ABC exporters are implicated in various diseases or cause multidrug resistance of cancer cells, bacterial ABC importers are essential for the uptake of nutrients, including rare elements such as molybdenum. A detailed understanding of their mechanisms requires direct visualization at high resolution and in distinct conformations. Our recent structure of the multidrug ABC exporter Sav1866 has revealed an outward-facing conformation of the transmembrane domains coupled to a closed conformation of the nucleotide-binding domains, reflecting the ATP-bound state. Here we present the 3.1 A crystal structure of a putative molybdate transporter (ModB2C2) from Archaeoglobus fulgidus in complex with its binding protein (ModA). Twelve transmembrane helices of the ModB subunits provide an inward-facing conformation, with a closed gate near the external membrane boundary. The ATP-hydrolysing ModC subunits reveal a nucleotide-free, open conformation, whereas the attached binding protein aligns the substrate-binding cleft with the entrance to the presumed translocation pathway. Structural comparison of ModB2C2A with Sav1866 suggests a common alternating access and release mechanism, with binding of ATP promoting an outward-facing conformation and dissociation of the hydrolysis products promoting an inward-facing conformation.


ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Archaeoglobus fulgidus/chemistry , Molybdenum/metabolism , Amino Acid Sequence , Binding Sites , Conserved Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation
...