Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Biol Cell ; 35(2): ar17, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38019605

RESUMEN

The RNA-binding protein Quaking (QKI) has widespread effects on mRNA regulation including alternative splicing, stability, translation, and localization of target mRNAs. Recently, QKI was found to be induced during epithelial-mesenchymal transition (EMT), where it promotes a mesenchymal alternative splicing signature that contributes to the mesenchymal phenotype. QKI is itself alternatively spliced to produce three major isoforms, QKI-5, QKI-6, and QKI-7. While QKI-5 is primarily localized to the nucleus where it controls mesenchymal splicing during EMT, the functions of the two predominantly cytoplasmic isoforms, QKI-6 and QKI-7, in this context remain uncharacterized. Here we used CRISPR-mediated depletion of QKI in a human mammary epithelial cell model of EMT and studied the effects of expressing the QKI isoforms in isolation and in combination. QKI-5 was required to induce mesenchymal morphology, while combined expression of QKI-5 with either QKI-6 or QKI-7 further enhanced mesenchymal morphology and cell migration. In addition, we found that QKI-6 and QKI-7 can partially localize to the nucleus and contribute to alternative splicing of QKI target genes. These findings indicate that the QKI isoforms function in a dynamic and cooperative manner to promote the mesenchymal phenotype.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Humanos , Isoformas de Proteínas/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38112323

RESUMEN

Epithelial-mesenchymal transition (EMT) plays important roles in tumour progression and is orchestrated by dynamic changes in gene expression. While it is well established that post-transcriptional regulation plays a significant role in EMT, the extent of alternative polyadenylation (APA) during EMT has not yet been explored. Using 3' end anchored RNA sequencing, we mapped the alternative polyadenylation (APA) landscape following Transforming Growth Factor (TGF)-ß-mediated induction of EMT in human mammary epithelial cells and found APA generally causes 3'UTR lengthening during this cell state transition. Investigation of potential mediators of APA indicated the RNA-binding protein Quaking (QKI), a splicing factor induced during EMT, regulates a subset of events including the length of its own transcript. Analysis of QKI crosslinked immunoprecipitation (CLIP)-sequencing data identified the binding of QKI within 3' untranslated regions (UTRs) was enriched near cleavage and polyadenylation sites. Following QKI knockdown, APA of many transcripts is altered to produce predominantly shorter 3'UTRs associated with reduced gene expression. These findings reveal the changes in APA that occur during EMT and identify a potential role for QKI in this process.


Asunto(s)
Regulación de la Expresión Génica , Poliadenilación , Humanos , Transición Epitelial-Mesenquimal/genética , Secuencia de Bases , Proteínas de Unión al ARN/genética , Regiones no Traducidas 3'
3.
Nat Commun ; 13(1): 5680, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167836

RESUMEN

Inter and intra-tumoral heterogeneity are major stumbling blocks in the treatment of cancer and are responsible for imparting differential drug responses in cancer patients. Recently, the availability of high-throughput screening datasets has paved the way for machine learning based personalized therapy recommendations using the molecular profiles of cancer specimens. In this study, we introduce Precily, a predictive modeling approach to infer treatment response in cancers using gene expression data. In this context, we demonstrate the benefits of considering pathway activity estimates in tandem with drug descriptors as features. We apply Precily on single-cell and bulk RNA sequencing data associated with hundreds of cancer cell lines. We then assess the predictability of treatment outcomes using our in-house prostate cancer cell line and xenografts datasets exposed to differential treatment conditions. Further, we demonstrate the applicability of our approach on patient drug response data from The Cancer Genome Atlas and an independent clinical study describing the treatment journey of three melanoma patients. Our findings highlight the importance of chemo-transcriptomics approaches in cancer treatment selection.


Asunto(s)
Antineoplásicos , Melanoma , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Expresión Génica , Humanos , Aprendizaje Automático , Masculino , Melanoma/tratamiento farmacológico , Melanoma/genética , Análisis de Secuencia de ARN
4.
Breast Cancer Res ; 24(1): 8, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35078508

RESUMEN

BACKGROUND: Triple-negative breast cancers (TNBC) have a relatively poor prognosis and responses to targeted therapies. Between 25 and 39% of TNBCs are claudin-low, a poorly differentiated subtype enriched for mesenchymal, stem cell and mitogen-activated signaling pathways. We investigated the role of the cell-surface co-receptor NRP1 in the biology of claudin-low TNBC. METHODS: The clinical prognostic value of NRP1 was determined by Kaplan-Meier analysis. GSVA analysis of METABRIC and Oslo2 transcriptomics datasets was used to correlate NRP1 expression with claudin-low gene signature scores. NRP1 siRNA knockdown was performed in MDA-MB-231, BT-549, SUM159 and Hs578T claudin-low cells and proliferation and viability measured by live cell imaging and DNA quantification. In SUM159 orthotopic xenograft models using NSG mice, NRP1 was suppressed by shRNA knockdown or systemic treatment with the NRP1-targeted monoclonal antibody Vesencumab. NRP1-mediated signaling pathways were interrogated by protein array and Western blotting. RESULTS: High NRP1 expression was associated with shorter relapse- and metastasis-free survival specifically in ER-negative BrCa cohorts. NRP1 was over-expressed specifically in claudin-low clinical samples and cell lines, and NRP1 knockdown reduced proliferation of claudin-low cells and prolonged survival in a claudin-low orthotopic xenograft model. NRP1 inhibition suppressed expression of the mesenchymal and stem cell markers ZEB1 and ITGA6, respectively, compromised spheroid-initiating capacity and exerted potent anti-tumor effects on claudin-low orthotopic xenografts (12.8-fold reduction in endpoint tumor volume). NRP1 was required to maintain maximal RAS/MAPK signaling via EGFR and PDGFR, a hallmark of claudin-low tumors. CONCLUSIONS: These data implicate NRP1 in the aggressive phenotype of claudin-low breast cancer and offer a novel targeted therapeutic approach to this poor prognosis subtype.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Claudinas/metabolismo , Femenino , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Recurrencia Local de Neoplasia , Neuropilina-1/genética , Neuropilina-1/uso terapéutico , Células Madre/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Proteínas ras
5.
Cancers (Basel) ; 13(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803139

RESUMEN

CMTM6 is a critical regulator of cell surface expression of PD-L1 in tumor cells, but little is known about the transcriptional regulation of CMTM6. Here we report that the expression of CMTM6 positively correlates with the epithelial to mesenchymal transition (EMT) score in breast cancer cell lines and with the major EMT marker Vimentin in triple-negative breast cancers (TNBC). We showed that CMTM6 is concomitantly overexpressed with PD-L1 in breast mesenchymal compared with the epithelial cells. Driving a mesenchymal phenotype in SNAI1-inducible MCF-7 cells (MCF-7Mes cells) increased both PD-L1 and CMTM6. CMTM6 silencing in MCF-7Mes cells partially reduced cell surface expression of PD-L1, indicating that a proportion of the PD-L1 on the surface of MCF-7Mes cells depends on CMTM6. We also found a positive correlation between CMTM3 and CMTM7 expression with EMT score in breast cancer cells, and with Vimentin in TNBC patients. Dual knockdown of CMTM6 and CMTM7 significantly decreased PD-L1 surface expression in MCF-7Mes cells, indicating that both CMTM6 and CMTM7 regulate the expression of PD-L1. This study highlights the importance of CMTM6 and CMTM7 in EMT-induced PD-L1 and suggests that EMT, CMTM6 or CMTM7 modulators can be combined with anti-PD-L1 in patients with highly aggressive breast cancer.

6.
Clin Cancer Res ; 26(7): 1678-1689, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31919137

RESUMEN

PURPOSE: Patients with metastatic prostate cancer are increasingly presenting with treatment-resistant, androgen receptor-negative/low (AR-/Low) tumors, with or without neuroendocrine characteristics, in processes attributed to tumor cell plasticity. This plasticity has been modeled by Rb1/p53 knockdown/knockout and is accompanied by overexpression of the pluripotency factor, Sox2. Here, we explore the role of the developmental transcription factor Sox9 in the process of prostate cancer therapy response and tumor progression. EXPERIMENTAL DESIGN: Unique prostate cancer cell models that capture AR-/Low stem cell-like intermediates were analyzed for features of plasticity and the functional role of Sox9. Human prostate cancer xenografts and tissue microarrays were evaluated for temporal alterations in Sox9 expression. The role of NF-κB pathway activity in Sox9 overexpression was explored. RESULTS: Prostate cancer stem cell-like intermediates have reduced Rb1 and p53 protein expression and overexpress Sox2 as well as Sox9. Sox9 was required for spheroid growth, and overexpression increased invasiveness and neural features of prostate cancer cells. Sox9 was transiently upregulated in castration-induced progression of prostate cancer xenografts and was specifically overexpressed in neoadjuvant hormone therapy (NHT)-treated patient tumors. High Sox9 expression in NHT-treated patients predicts biochemical recurrence. Finally, we link Sox9 induction to NF-κB dimer activation in prostate cancer cells. CONCLUSIONS: Developmentally reprogrammed prostate cancer cell models recapitulate features of clinically advanced prostate tumors, including downregulated Rb1/p53 and overexpression of Sox2 with Sox9. Sox9 is a marker of a transitional state that identifies prostate cancer cells under the stress of therapeutic assault and facilitates progression to therapy resistance. Its expression may index the relative activity of the NF-κB pathway.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Resistencia a Antineoplásicos , Células Neuroendocrinas/patología , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Factor de Transcripción SOX9/metabolismo , Células Madre/patología , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones , FN-kappa B/metabolismo , Células Neuroendocrinas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Factor de Transcripción SOX9/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Células Madre/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Artículo en Inglés | MEDLINE | ID: mdl-31379747

RESUMEN

Androgen deprivation therapy (ADT) is the standard treatment for advanced prostate cancer (PCa), yet many patients relapse with lethal metastatic disease. With this loss of androgens, increased cell plasticity has been observed as an adaptive response to ADT. This includes gain of invasive and migratory capabilities, which may contribute to PCa metastasis. Hyperinsulinemia, which develops as a side-effect of ADT, has been associated with increased tumor aggressiveness and faster treatment failure. We investigated the direct effects of insulin in PCa cells that may contribute to this progression. We measured cell migration and invasion induced by insulin using wound healing and transwell assays in a range of PCa cell lines of variable androgen dependency (LNCaP, 22RV1, DuCaP, and DU145 cell lines). To determine the molecular events driving insulin-induced invasion we used transcriptomics, quantitative real time-PCR, and immunoblotting in three PCa cell lines. Insulin increased invasiveness of PCa cells, upregulating Forkhead Box Protein C2 (FOXC2), and activating key PCa cell plasticity mechanisms including gene changes consistent with epithelial-to-mesenchymal transition (EMT) and a neuroendocrine phenotype. Additionally, analysis of publicly available clinical PCa tumor data showed metastatic prostate tumors demonstrate a positive correlation between insulin receptor expression and the EMT transcription factor FOXC2. The insulin receptor is not suitable to target clinically however, our data shows that actions of insulin in PCa cells may be suppressed by inhibiting downstream signaling molecules, PI3K and ERK1/2. This study identifies for the first time, a mechanism for insulin-driven cancer cell motility and supports the concept that targeting insulin signaling at the level of the PCa tumor may extend the therapeutic efficacy of ADT.

8.
Oncogene ; 38(7): 913-934, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30194451

RESUMEN

The propensity of cancer cells to transition between epithelial and mesenchymal phenotypic states via the epithelial-mesenchymal transition (EMT) program can regulate metastatic processes, cancer progression, and treatment resistance. Transcriptional investigations using reversible models of EMT, revealed the mesenchymal-to-epithelial reverting transition (MErT) to be enriched in clinical samples of metastatic castrate resistant prostate cancer (mCRPC). From this enrichment, a metastasis-derived gene signature was identified that predicted more rapid cancer relapse and reduced survival across multiple human carcinoma types. Additionally, the transcriptional profile of MErT is not a simple mirror image of EMT as tumour cells retain a transcriptional "memory" following a reversible EMT. This memory was also enriched in mCRPC samples. Cumulatively, our studies reveal the transcriptional profile of epithelial-mesenchymal plasticity and highlight the unique transcriptional properties of MErT. Furthermore, our findings provide evidence to support the association of epithelial plasticity with poor clinical outcomes in multiple human carcinoma types.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/mortalidad , Línea Celular Tumoral , Supervivencia sin Enfermedad , Humanos , Masculino , Metástasis de la Neoplasia , Neoplasias de la Próstata Resistentes a la Castración/clasificación , Neoplasias de la Próstata Resistentes a la Castración/patología , Tasa de Supervivencia
9.
Oncogene ; 38(13): 2436, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510231

RESUMEN

Following the publication of the above article, the authors noted an error in Figure 4, panel B. The colours of the localized and mCRPC samples were accidentally switched. The authors have corrected the colour scheme and added a key to the figure. They have also updated the colour scheme of panel C, both bars are now red instead of one red and one blue. The authors wish to apologize for any inconvenience caused.

10.
EMBO J ; 37(13)2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29871889

RESUMEN

Members of the miR-200 family are critical gatekeepers of the epithelial state, restraining expression of pro-mesenchymal genes that drive epithelial-mesenchymal transition (EMT) and contribute to metastatic cancer progression. Here, we show that miR-200c and another epithelial-enriched miRNA, miR-375, exert widespread control of alternative splicing in cancer cells by suppressing the RNA-binding protein Quaking (QKI). During EMT, QKI-5 directly binds to and regulates hundreds of alternative splicing targets and exerts pleiotropic effects, such as increasing cell migration and invasion and restraining tumour growth, without appreciably affecting mRNA levels. QKI-5 is both necessary and sufficient to direct EMT-associated alternative splicing changes, and this splicing signature is broadly conserved across many epithelial-derived cancer types. Importantly, several actin cytoskeleton-associated genes are directly targeted by both QKI and miR-200c, revealing coordinated control of alternative splicing and mRNA abundance during EMT These findings demonstrate the existence of a miR-200/miR-375/QKI axis that impacts cancer-associated epithelial cell plasticity through widespread control of alternative splicing.


Asunto(s)
Empalme Alternativo/fisiología , Plasticidad de la Célula/fisiología , Transición Epitelial-Mesenquimal/fisiología , MicroARNs/fisiología , Proteínas de Unión al ARN/fisiología , Animales , Línea Celular Tumoral , Movimiento Celular , Perros , Humanos , Células de Riñón Canino Madin Darby , Ratones SCID
11.
Sci Rep ; 8(1): 583, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330502

RESUMEN

Insulin-like growth factor (IGF)-I binds to the ECM protein vitronectin (VN) through IGF binding proteins (IGFBPs) to enhance proliferation and migration of skin keratinocytes and fibroblasts. Although evidence exists for the role of individual components of the complex (IGF-I, IGFBP-3 and VN), the cellular functions stimulated by these proteins together as a complex remains un-investigated in melanoma cells. We report here that the IGF-I:IGFBP-3:VN trimeric complex stimulates a dose-dependent increase in the proliferation and migration of WM35 and Sk-MEL28 melanoma cells. In 3D Matrigel™ and hydrogel cultures, both cell lines formed primary tumor-like spheroids, which increased in size in a dose-dependent manner in response to the trimeric complex. Furthermore, we reveal IGFBP-3:VN protein complexes in malignant melanoma and squamous cell carcinoma patient tissues, where the IGFBP-3:VN complex was seen to be predominantly tumor cell-associated. Peptide antagonists designed to target the binding of IGF-I:IGFBP-3 to VN were demonstrated to inhibit IGF-I:IGFBP-3:VN-stimulated cell migration, invasion and 3D tumor cell growth of melanoma cells. Overall, this study provides new data on IGF:ECM interactions in skin malignancies and demonstrates the potential usefulness of a growth factor:ECM-disrupting strategy for abrogating tumor progression.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Melanoma/metabolismo , Vitronectina/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Humanos , Complejos Multiproteicos/farmacología , Unión Proteica
12.
Int J Pharm ; 532(1): 511-518, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-28916296

RESUMEN

The main barrier to the development of an effective RNA interference (RNAi) therapy is the lack of a suitable delivery vector. Modified cyclodextrins have emerged in recent years for the delivery of siRNA. In the present study, a folate-targeted amphiphilic cyclodextrin was formulated using DSPE-PEG5000-folate to target prostate cancer cells. The fusogenic peptide GALA was included in the formulation to aid in the endosomal release of siRNA. Targeted nanoparticles were less than 200nm in size with a neutral surface charge. The complexes were able to bind siRNA and protect it from serum nucleases. Incubation with excess free folate resulted in a significant decrease in the uptake of targeted nanoparticles in LNCaP and PC3 cells, both of which have been reported to have differing pathways of folate uptake. There was a significant reduction in the therapeutic targets, ZEB1 and NRP1 at mRNA and protein level following treatment with targeted complexes. In preliminary functional assays using 3D spheroids, treatment of PC3 tumours with targeted complexes with ZEB1 and NRP1 siRNA resulted in more compact colonies relative to the untargeted controls and inhibited infiltration into the Matrigel™ layer.


Asunto(s)
Ciclodextrinas/química , Ácido Fólico/metabolismo , Nanopartículas/química , Neoplasias de la Próstata/terapia , ARN Interferente Pequeño/administración & dosificación , Línea Celular Tumoral , Humanos , Masculino , Neuropilina-1/metabolismo , Péptidos , Esferoides Celulares/efectos de los fármacos , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
13.
Oncotarget ; 8(12): 18949-18967, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28145883

RESUMEN

Treatment-induced neuroendocrine transdifferentiation (NEtD) complicates therapies for metastatic prostate cancer (PCa). Based on evidence that PCa cells can transdifferentiate to other neuroectodermally-derived cell lineages in vitro, we proposed that NEtD requires first an intermediary reprogramming to metastable cancer stem-like cells (CSCs) of a neural class and we demonstrate that several different AR+/PSA+ PCa cell lines were efficiently reprogrammed to, maintained and propagated as CSCs by growth in androgen-free neural/neural crest (N/NC) stem medium. Such reprogrammed cells lost features of prostate differentiation; gained features of N/NC stem cells and tumor-initiating potential; were resistant to androgen signaling inhibition; and acquired an invasive phenotype in vitro and in vivo. When placed back into serum-containing mediums, reprogrammed cells could be re-differentiated to N-/NC-derived cell lineages or return back to an AR+ prostate-like state. Once returned, the AR+ cells were resistant to androgen signaling inhibition. Acute androgen deprivation or anti-androgen treatment in serum-containing medium led to the transient appearance of a sub-population of cells with similar characteristics. Finally, a 132 gene signature derived from reprogrammed PCa cell lines distinguished tumors from PCa patients with adverse outcomes. This model may explain neural manifestations of PCa associated with lethal disease. The metastable nature of the reprogrammed stem-like PCa cells suggests that cycles of PCa cell reprogramming followed by re-differentiation may support disease progression and therapeutic resistance. The ability of a gene signature from reprogrammed PCa cells to identify tumors from patients with metastasis or PCa-specific mortality implies that developmental reprogramming is linked to aggressive tumor behaviors.


Asunto(s)
Transdiferenciación Celular/fisiología , Reprogramación Celular/fisiología , Resistencia a Antineoplásicos/fisiología , Células Madre Neoplásicas/patología , Neoplasias de la Próstata/patología , Animales , Western Blotting , Progresión de la Enfermedad , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Xenoinjertos , Humanos , Masculino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Pez Cebra
14.
Oncotarget ; 7(38): 61000-61020, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27876705

RESUMEN

Epithelial to mesenchymal transition (EMT) is a developmental program that has been implicated in progression, metastasis and therapeutic resistance of some carcinomas. To identify genes whose overexpression drives EMT, we screened a lentiviral expression library of 17000 human open reading frames (ORFs) using high-content imaging to quantitate cytoplasmic vimentin. Hits capable of increasing vimentin in the mammary carcinoma-derived cell line MDA-MB-468 were confirmed in the non-tumorigenic breast-epithelial cell line MCF10A. When overexpressed in this model, they increased the rate of cell invasion through Matrigel™, induced mesenchymal marker expression and reduced expression of the epithelial marker E-cadherin. In gene-expression datasets derived from breast cancer patients, the expression of several novel genes correlated with expression of known EMT marker genes, indicating their in vivo relevance. As EMT-associated properties are thought to contribute in several ways to cancer progression, genes identified in this study may represent novel targets for anti-cancer therapy.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal , Genoma Humano , Antígenos CD , Cadherinas/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Células Epiteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Lentivirus/metabolismo , Sistemas de Lectura Abierta , Plásmidos/metabolismo , Vimentina/metabolismo
15.
Mol Cancer Ther ; 15(7): 1602-13, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27196774

RESUMEN

We provide proof-of-concept evidence for a new class of therapeutics that target growth factor:extracellular matrix (GF:ECM) interactions for the management of breast cancer. Insulin-like growth factor-I (IGF-I) forms multiprotein complexes with IGF-binding proteins (IGFBP) and the ECM protein vitronectin (VN), and stimulates the survival, migration and invasion of breast cancer cells. For the first time we provide physical evidence for IGFBP-3:VN interactions in breast cancer patient tissues; these interactions were predominantly localized to tumor cell clusters and in stroma surrounding tumor cells. We show that disruption of IGF-I:IGFBP:VN complexes with L(27)-IGF-II inhibits IGF-I:IGFBP:VN-stimulated breast cancer cell migration and proliferation in two- and three-dimensional assay systems. Peptide arrays screened to identify regions critical for the IGFBP-3/-5:VN and IGF-II:VN interactions demonstrated IGFBP-3/-5 and IGF-II binds VN through the hemopexin-2 domain, and VN binds IGFBP-3 at residues not involved in the binding of IGF-I to IGFBP-3. IGFBP-interacting VN peptides identified from these peptide arrays disrupted the IGF-I:IGFBP:VN complex, impeded the growth of primary tumor-like spheroids and, more importantly, inhibited the invasion of metastatic breast cancer cells in 3D assay systems. These studies provide first-in-field evidence for the utility of small peptides in antagonizing GF:ECM-mediated biologic functions and present data demonstrating the potential of these peptide antagonists as novel therapeutics. Mol Cancer Ther; 15(7); 1602-13. ©2016 AACR.


Asunto(s)
Neoplasias de la Mama/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Somatomedinas/metabolismo , Vitronectina/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Inmunohistoquímica , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/química , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/química , Ligandos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Somatomedinas/química , Vitronectina/química
16.
Cancer Res ; 76(14): 4270-82, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27221703

RESUMEN

Epithelial-mesenchymal transition (EMT) is prominent in circulating tumor cells (CTC), but how it influences metastatic spread in this setting is obscure. Insofar as blood provides a specific microenvironment for tumor cells, we explored a potential link between EMT and coagulation that may provide EMT-positive CTCs with enhanced colonizing properties. Here we report that EMT induces tissue factor (TF), a major cell-associated initiator of coagulation and related procoagulant properties in the blood. TF blockade by antibody or shRNA diminished the procoagulant activity of EMT-positive cells, confirming a functional role for TF in these processes. Silencing the EMT transcription factor ZEB1 inhibited both EMT-associated TF expression and coagulant activity, further strengthening the link between EMT and coagulation. Accordingly, EMT-positive cells exhibited a higher persistance/survival in the lungs of mice colonized after intravenous injection, a feature diminished by TF or ZEB1 silencing. In tumor cells with limited metastatic capability, enforcing expression of the EMT transcription factor Snail increased TF, coagulant properties, and early metastasis. Clinically, we identified a subpopulation of CTC expressing vimentin and TF in the blood of metastatic breast cancer patients consistent with our observations. Overall, our findings define a novel EMT-TF regulatory axis that triggers local activation of coagulation pathways to support metastatic colonization of EMT-positive CTCs. Cancer Res; 76(14); 4270-82. ©2016 AACR.


Asunto(s)
Coagulación Sanguínea , Transición Epitelial-Mesenquimal , Células Neoplásicas Circulantes/patología , Tromboplastina/biosíntesis , Animales , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/fisiología
17.
Clin Exp Metastasis ; 33(4): 385-99, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26932199

RESUMEN

The majority of prostate cancer (PCa) deaths occur due to the metastatic spread of tumor cells to distant organs. Currently, there is a lack of effective therapies once tumor cells have spread outside the prostate. It is therefore imperative to rapidly develop therapeutics to inhibit the metastatic spread of tumor cells. Gain of cell motility and invasive properties is the first step of metastasis and by inhibiting motility one can potentially inhibit metastasis. Using the drug repositioning strategy, we developed a cell-based multi-parameter primary screening assay to identify drugs that inhibit the migratory and invasive properties of metastatic PC-3 PCa cells. Following the completion of the primary screening assay, 33 drugs were identified from an FDA approved drug library that either inhibited migration or were cytotoxic to the PC-3 cells. Based on the data obtained from the subsequent validation studies, mitoxantrone hydrochloride, simvastatin, fluvastatin and vandetanib were identified as strong candidates that can inhibit both the migration and invasion of PC-3 cells without significantly affecting cell viability. By employing the drug repositioning strategy instead of a de novo drug discovery and development strategy, the identified drug candidates have the potential to be rapidly translated into the clinic for the management of men with aggressive forms of PCa.


Asunto(s)
Antineoplásicos/administración & dosificación , Movimiento Celular/efectos de los fármacos , Metástasis de la Neoplasia/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Masculino , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología , Neoplasias de la Próstata/patología
18.
Trends Mol Med ; 20(11): 643-51, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25262538

RESUMEN

Over the past decade, the capacity of cancer cells to oscillate between epithelial and mesenchymal phenotypes, termed epithelial plasticity (EP), has been demonstrated to play a critical role in metastasis. This phenomenon may be particularly important for prostate cancer (PC) progression, since recent studies have revealed interplay between EP and signaling by the androgen receptor (AR) oncoprotein. Moreover, EP appears to play a role in dictating the response to therapies for metastatic PC. This review will evaluate preclinical and clinical evidence for the relevance of EP in PC progression and consider the potential of targeting and measuring EP as a means to treat and manage lethal forms of the disease.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias de la Próstata/patología , Progresión de la Enfermedad , Humanos , Masculino , Terapia Molecular Dirigida , Metástasis de la Neoplasia , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/terapia , Receptores Androgénicos/metabolismo , Transducción de Señal , Resultado del Tratamiento
19.
BMC Cancer ; 14: 627, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25167778

RESUMEN

BACKGROUND: Cancer metastasis is the main contributor to breast cancer fatalities as women with the metastatic disease have poorer survival outcomes than women with localised breast cancers. There is an urgent need to develop appropriate prognostic methods to stratify patients based on the propensities of their cancers to metastasise. The insulin-like growth factor (IGF)-I: IGF binding protein (IGFBP):vitronectin complexes have been shown to stimulate changes in gene expression favouring increased breast cancer cell survival and a migratory phenotype. We therefore investigated the prognostic potential of these IGF- and extracellular matrix (ECM) interaction-induced proteins in the early identification of breast cancers with a propensity to metastasise using patient-derived tissue microarrays. METHODS: Semiquantitative immunohistochemistry analyses were performed to compare the extracellular and subcellular distribution of IGF- and ECM-induced signalling proteins among matched normal, primary cancer and metastatic cancer formalin-fixed paraffin-embedded breast tissue samples. RESULTS: The IGF- and ECM-induced signalling proteins were differentially expressed between subcellular and extracellular localisations. Vitronectin and IGFBP-5 immunoreactivity was lower while ß1 integrin immunoreactivity was higher in the stroma surrounding metastatic cancer tissues, as compared to normal breast and primary cancer stromal tissues. Similarly, immunoreactive stratifin was found to be increased in the stroma of primary as well as metastatic breast tissues. Immunoreactive fibronectin and ß1 integrin was found to be highly expressed at the leading edge of tumours. Based on the immunoreactivity it was apparent that the cell signalling proteins AKT1 and ERK1/2 shuffled from the nucleus to the cytoplasm with tumour progression. CONCLUSION: This is the first in-depth, compartmentalised analysis of the distribution of IGF- and ECM-induced signalling proteins in metastatic breast cancers. This study has provided insights into the changing pattern of cellular localisation and expression of IGF- and ECM-induced signalling proteins in different stages of breast cancer. The differential distribution of these biomarkers could provide important prognostic and predictive indicators that may assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy.


Asunto(s)
Neoplasias de la Mama/patología , Matriz Extracelular/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Mama/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Transducción de Señal
20.
Cell Adh Migr ; 8(2): 88-93, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24714592

RESUMEN

Synthetic hydrogels selectively decorated with cell adhesion motifs are rapidly emerging as promising substrates for 3D cell culture. When cells are grown in 3D they experience potentially more physiologically relevant cellâ€"cell interactions and physical cues compared with traditional 2D cell culture on stiff surfaces. A newly developed polymer based on poly(2-oxazoline)s has been used for the first time to control attachment of fibroblast cells and is discussed here for its potential use in 3D cell culture with particular focus on cancer cells toward the ultimate aim of high-throughput screening of anticancer therapies. Advantages and limitations of using poly(2-oxazoline) hydrogels are discussed and compared with more established polymers, especially polyethylene glycol (PEG).


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Fibroblastos/citología , Hidrogeles/química , Oxazoles/química , Adhesión Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Neoplasias/patología , Polietilenglicoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...