Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 13(11)2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34834923

RESUMEN

Mosquito-borne viruses of the Flavivirus genus (Flaviviridae family) pose an ongoing threat to global public health. For example, dengue, Japanese encephalitis, West Nile, yellow fever, and Zika viruses are transmitted by infected mosquitoes and cause severe and fatal diseases in humans. The means by which mosquito-borne flaviviruses establish persistent infection in mosquitoes and cause disease in humans are complex and depend upon a myriad of virus-host interactions, such as those of the innate immune system, which are the main focus of our review. This review also covers the different strategies utilized by mosquito-borne flaviviruses to antagonize the innate immune response in humans and mosquitoes. Given the lack of antiviral therapeutics for mosquito-borne flaviviruses, improving our understanding of these virus-immune interactions could lead to new antiviral therapies and strategies for developing refractory vectors incapable of transmitting these viruses, and can also provide insights into determinants of viral tropism that influence virus emergence into new species.


Asunto(s)
Culicidae/inmunología , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/veterinaria , Flavivirus/inmunología , Infección Persistente/inmunología , Infección Persistente/veterinaria , Animales , Culicidae/fisiología , Culicidae/virología , Flavivirus/genética , Flavivirus/fisiología , Infecciones por Flavivirus/transmisión , Infecciones por Flavivirus/virología , Humanos , Inmunidad Innata , Mosquitos Vectores/inmunología , Mosquitos Vectores/fisiología , Mosquitos Vectores/virología , Infección Persistente/virología
2.
Int J Food Microbiol ; 348: 109151, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-33940535

RESUMEN

Foodborne outbreaks associated with transmission of norovirus are increasingly becoming a public health concern. Foods can be contaminated with faecal material at the point of production or during food preparation, in both the home and in commercial premises. Transmission of norovirus occurs through the faecal-oral route, either via person-to-person contact or through faecal-contamination of food, water, or environmental surfaces. Understanding the role and pathways of norovirus transmission - either via food handlers' hands, contaminated foods or the environment - remains a key public health priority to reduce the burden of norovirus-associated gastroenteritis. However the proportion of norovirus that is typically transferred remains unknown. Understanding this is necessary to estimate the risk of infection and the burden of gastroenteritis caused by norovirus. In this paper we present a novel method of capture, concentration and molecular detection of norovirus from a wider range of complex food matrices than those demonstrated in existing published methods. We demonstrate that this method can be used as a tool to detect and quantify norovirus from naturally contaminated food, and for monitoring norovirus transfer between food handlers' gloved hands, food or the environment. We measure the effect of introducing contamination at different food production process stages, to the final food product, to determine whether this could cause infection and disease. Between 5.9 and 6.3 Log10 cDNA copies/µl of norovirus GII were inoculated onto food handlers' gloved hands, food or the environment and 1.1-7.4% of norovirus contamination was recovered from all samples tested. When interpreted quantitatively, this percentage equates to levels predicted to be sufficient to cause infection and disease through consumption of the final food product, demonstrating a public health risk. Overall detection and quantification of norovirus from foods, food handlers' gloved hands and the environment, when suspected to be implicated in foodborne transmissions, is paramount for appropriate outbreak investigation.


Asunto(s)
Infecciones por Caliciviridae/transmisión , Manipulación de Alimentos/métodos , Enfermedades Transmitidas por los Alimentos/virología , Gastroenteritis/virología , Norovirus/genética , Infecciones por Caliciviridae/virología , Brotes de Enfermedades , Heces/virología , Contaminación de Alimentos/análisis , Humanos
3.
Nat Commun ; 12(1): 542, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483491

RESUMEN

There is need for effective and affordable vaccines against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a protein nanoparticle vaccine against SARS-CoV-2. The vaccine is based on the display of coronavirus spike glycoprotein receptor-binding domain (RBD) on a synthetic virus-like particle (VLP) platform, SpyCatcher003-mi3, using SpyTag/SpyCatcher technology. Low doses of RBD-SpyVLP in a prime-boost regimen induce a strong neutralising antibody response in mice and pigs that is superior to convalescent human sera. We evaluate antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we show that RBD-SpyVLP induces a polyclonal antibody response that recognises key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. Moreover, RBD-SpyVLP is thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence. The data suggests that RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Péptidos/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Bloqueadores/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , Línea Celular , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Porcinos
4.
PLoS Biol ; 18(12): e3001016, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33347434

RESUMEN

SARS Coronavirus 2 (SARS-CoV-2) emerged in late 2019, leading to the Coronavirus Disease 2019 (COVID-19) pandemic that continues to cause significant global mortality in human populations. Given its sequence similarity to SARS-CoV, as well as related coronaviruses circulating in bats, SARS-CoV-2 is thought to have originated in Chiroptera species in China. However, whether the virus spread directly to humans or through an intermediate host is currently unclear, as is the potential for this virus to infect companion animals, livestock, and wildlife that could act as viral reservoirs. Using a combination of surrogate entry assays and live virus, we demonstrate that, in addition to human angiotensin-converting enzyme 2 (ACE2), the Spike glycoprotein of SARS-CoV-2 has a broad host tropism for mammalian ACE2 receptors, despite divergence in the amino acids at the Spike receptor binding site on these proteins. Of the 22 different hosts we investigated, ACE2 proteins from dog, cat, and cattle were the most permissive to SARS-CoV-2, while bat and bird ACE2 proteins were the least efficiently used receptors. The absence of a significant tropism for any of the 3 genetically distinct bat ACE2 proteins we examined indicates that SARS-CoV-2 receptor usage likely shifted during zoonotic transmission from bats into people, possibly in an intermediate reservoir. Comparison of SARS-CoV-2 receptor usage to the related coronaviruses SARS-CoV and RaTG13 identified distinct tropisms, with the 2 human viruses being more closely aligned. Finally, using bioinformatics, structural data, and targeted mutagenesis, we identified amino acid residues within the Spike-ACE2 interface, which may have played a pivotal role in the emergence of SARS-CoV-2 in humans. The apparently broad tropism of SARS-CoV-2 at the point of viral entry confirms the potential risk of infection to a wide range of companion animals, livestock, and wildlife.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tropismo Viral , Acoplamiento Viral , Sustitución de Aminoácidos , Animales , Sitios de Unión , Gatos , Bovinos , Perros , Cobayas , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Conejos , Ratas , Zoonosis Virales/virología
5.
NPJ Vaccines ; 5(1): 69, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793398

RESUMEN

Clinical development of the COVID-19 vaccine candidate ChAdOx1 nCoV-19, a replication-deficient simian adenoviral vector expressing the full-length SARS-CoV-2 spike (S) protein was initiated in April 2020 following non-human primate studies using a single immunisation. Here, we compared the immunogenicity of one or two doses of ChAdOx1 nCoV-19 in both mice and pigs. Whilst a single dose induced antigen-specific antibody and T cells responses, a booster immunisation enhanced antibody responses, particularly in pigs, with a significant increase in SARS-CoV-2 neutralising titres.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA