Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 144: 105495, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37730194

RESUMEN

Polymers are a very large class of chemicals comprising often complex molecules with multiple functions used in everyday products. The EU Commission is seeking to develop environmental and human health standard information requirements (SIRs) for man-made polymers requiring registration (PRR) under a revised Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation. Conventional risk assessment approaches currently used for small molecules may not apply to most polymers. Therefore, we propose a conceptual three-tiered regulatory approach for data generation to assess individual and groups of polymers requiring registration (PRR). A key element is the grouping of polymers according to chemistry, physico-chemical properties and hazard similarity. The limited bioavailability of many polymers is a prominent difference to many small molecules and is a key consideration of the proposed approach. Methods assessing potential for systemic bioavailability are integral to Tier 1. Decisions for further studies are based on considerations of properties and effects, combined with systemic bioavailability and use and exposure considerations. For many PRRs, Tier 1 data on hazard, use and exposure will likely be sufficient for achieving the protection goals of REACH. Vertebrate animal studies in Tiers 2 and 3 can be limited to targeted testing. The outlined approach aims to make use of current best scientific evidence and to reduce animal testing whilst providing data for an adequate level of protection.

2.
Toxicology ; 436: 152421, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32119890

RESUMEN

Although the need for non-animal alternatives has been well recognised for the human health hazard assessment of chemicals in general, it has become especially pressing for cosmetic ingredients due to the full implementation of testing and marketing bans on animal testing under the European Cosmetics Regulation. This means that for the safety assessment of cosmetics, the necessary safety data for both the ingredients and the finished product can be drawn from validated (or scientifically-valid), so-called "Replacement methods". In view of the challenges for safety assessment without recourse to animal test data, the Methodology Working Group of the Scientific Committee on Consumer Safety organised a workshop in February 2019 to discuss the key issues in regard to the use of animal-free alternative methods for the safety evaluation of cosmetic ingredients. This perspective article summarises the outcomes of this workshop and reflects on the state-of-the-art and possible way forward for the safety assessment of cosmetic ingredients for which no experimental animal data exist. The use and optimisation of "New Approach Methodology" that could be useful tools in the context of the "Next Generation Risk Assessment" and the strategic framework for safety assessment of cosmetics were discussed in depth.


Asunto(s)
Alternativas a las Pruebas en Animales/tendencias , Cosméticos/efectos adversos , Pruebas de Toxicidad/tendencias , Animales , Simulación por Computador , Seguridad de Productos para el Consumidor , Cosméticos/clasificación , Cosméticos/farmacocinética , Difusión de Innovaciones , Unión Europea , Predicción , Humanos , Modelos Biológicos , Medición de Riesgo , Relación Estructura-Actividad
3.
Crit Rev Toxicol ; 47(8): 705-727, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28510487

RESUMEN

The threshold of toxicological concern (TTC) approach is a resource-effective de minimis method for the safety assessment of chemicals, based on distributional analysis of the results of a large number of toxicological studies. It is being increasingly used to screen and prioritize substances with low exposure for which there is little or no toxicological information. The first step in the approach is the identification of substances that may be DNA-reactive mutagens, to which the lowest TTC value is applied. This TTC value was based on the analysis of the cancer potency database and involved a number of assumptions that no longer reflect the state-of-the-science and some of which were not as transparent as they could have been. Hence, review and updating of the database is proposed, using inclusion and exclusion criteria reflecting current knowledge. A strategy for the selection of appropriate substances for TTC determination, based on consideration of weight of evidence for genotoxicity and carcinogenicity is outlined. Identification of substances that are carcinogenic by a DNA-reactive mutagenic mode of action and those that clearly act by a non-genotoxic mode of action will enable the protectiveness to be determined of both the TTC for DNA-reactive mutagenicity and that applied by default to substances that may be carcinogenic but are unlikely to be DNA-reactive mutagens (i.e. for Cramer class I-III compounds). Critical to the application of the TTC approach to substances that are likely to be DNA-reactive mutagens is the reliability of the software tools used to identify such compounds. Current methods for this task are reviewed and recommendations made for their application.


Asunto(s)
Carcinógenos/química , Bases de Datos de Compuestos Químicos/normas , Mutágenos/química , Programas Informáticos/normas , Humanos , Medición de Riesgo
4.
Mutagenesis ; 26(3): 407-13, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21193518

RESUMEN

Some plants use electrophilic metabolites as a defence against biological enemies. Some of them may react with DNA. We devised a new model to test this hypothesis. Plant tissue was homogenised. After incubation of the homogenate at 37°C for varying periods, the plant DNA was analysed for the presence of adducts using the (32)P-postlabelling technique. Adducts were detected with all Brassicales studied. Broccoli was investigated in detail. Adducts were absent in DNA isolated immediately after homogenisation of the plant. Subsequently, five characteristic adduct spots were formed in the homogenate, the maximum being reached after nearly 4 h. Adduct formation was low when broccoli was steamed before homogenisation, but was re-established when myrosinase was added to the homogenate, indicating that the active constituents were glucosinolates. Broccoli juice was mutagenic to Salmonella typhimurium, forming the same adduct spots in these target cells as in plant homogenate, but the relative intensity of the individual spots varied between both models. The patterns of adduct spots formed in homogenates of 15 other Brassicales species and tissues were similar to those detected with broccoli florets heads. However, the relative intensities of the spots varied. Sporadically, some spots were missing or additional spots appeared. These results, therefore, suggest that several different glucosinolates contribute to the adduct formation.


Asunto(s)
Brassicaceae/química , Aductos de ADN/análisis , ADN de Plantas/metabolismo , Glucosinolatos/metabolismo , Brassicaceae/genética , Aductos de ADN/toxicidad , Glucosinolatos/toxicidad , Pruebas de Mutagenicidad , Radioisótopos de Fósforo , Salmonella typhimurium/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...