Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Nat Commun ; 15(1): 3502, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664378

Beneficial gut bacteria are indispensable for developing colonic mucus and fully establishing its protective function against intestinal microorganisms. Low-fiber diet consumption alters the gut bacterial configuration and disturbs this microbe-mucus interaction, but the specific bacteria and microbial metabolites responsible for maintaining mucus function remain poorly understood. By using human-to-mouse microbiota transplantation and ex vivo analysis of colonic mucus function, we here show as a proof-of-concept that individuals who increase their daily dietary fiber intake can improve the capacity of their gut microbiota to prevent diet-mediated mucus defects. Mucus growth, a critical feature of intact colonic mucus, correlated with the abundance of the gut commensal Blautia, and supplementation of Blautia coccoides to mice confirmed its mucus-stimulating capacity. Mechanistically, B. coccoides stimulated mucus growth through the production of the short-chain fatty acids propionate and acetate via activation of the short-chain fatty acid receptor Ffar2, which could serve as a new target to restore mucus growth during mucus-associated lifestyle diseases.


Colon , Dietary Fiber , Fatty Acids, Volatile , Gastrointestinal Microbiome , Intestinal Mucosa , Receptors, Cell Surface , Animals , Dietary Fiber/metabolism , Fatty Acids, Volatile/metabolism , Mice , Colon/metabolism , Colon/microbiology , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Female , Mice, Inbred C57BL , Mucus/metabolism , Fecal Microbiota Transplantation , Symbiosis , Propionates/metabolism , Clostridiales/metabolism , Acetates/metabolism , Adult
...