Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 383: 110679, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37597643

RESUMEN

ALDH4A1 genes encode mitochondrial enzymes of delta-1-pyrroline-5-carboxylate metabolism, generating glutamate from either proline or ornithine. Analyses were undertaken of several vertebrate and invertebrate genomes using reported human and mouse ALDH4A1 amino acid sequences. ALDH4A1 sequences and structures were highly conserved, including residues involved in catalysis, coenzyme binding and enzyme structure, previously reported for mouse and human ALDH4A1. The human ALDH4A1 gene contained 15 coding exons and was more highly expressed in human liver and kidney cortex. Vertebrate ALDH4A1 mitochondrial leader sequences exhibited diverse sequences. Phylogeny studies supported the appearance of the ALDH4A1 gene in invertebrate evolution which has been conserved and retained throughout subsequent vertebrate evolution as a single ALDH4A1 gene. Exceptions included polyploidy observed for the Atlantic salmon (Salmo salar) and African toad (Xenopus laevis) genes. An examination of ALDH4A1 sequences from related Drosophila species supported the appearance of a second ALDH4A gene (ALDH4A2) and time dependent evolutionary changes over the past 50 million years for both genes.


Asunto(s)
Drosophila , Ácido Glutámico , Animales , Humanos , Ratones , 1-Pirrolina-5-Carboxilato Deshidrogenasa , Drosophila/genética , Oxidorreductasas , Filogenia
2.
Chem Biol Interact ; 351: 109671, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34599912

RESUMEN

At least 19 human aldehyde dehydrogenase (ALDH) genes and enzymes have been studied among vertebrate organisms. BLAT and BLAST analyses were undertaken of Xenopus tropicalis (western clawed frog) and Xenopus laevis (African clawed frog) genomes which are related diploid (N = 20) and allotetraploid (N = 36) species, respectively. The corresponding ALDH genes and proteins within these Xenopus genomes were identified and studied. Evidence is presented for tetraploid copies of 10 Xenopus laevis ALDH genes, whereas another 7 identified ALDH genes were diploid in nature. Xenopus laevis and Xenopus tropicalis ALDH amino acid sequences were highly homologous with the human enzymes, with the exception of the mitochondrial signal peptide sequences. Amino acids performing catalytic and structural roles were conserved and identified based on previous reports of 3D structures for the corresponding mammalian enzymes.


Asunto(s)
Aldehído Deshidrogenasa/genética , Diploidia , Tetraploidía , Xenopus laevis/genética , Aldehído Deshidrogenasa/química , Secuencia de Aminoácidos , Animales , Evolución Molecular , Humanos , Filogenia , Señales de Clasificación de Proteína/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
3.
Chem Biol Interact ; 303: 22-26, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-30776359

RESUMEN

Bioinformatic analyses of salmon (Salmo salar) ALDH amino acid sequences supported the presence of at least 30 ALDH genes, which is more than for any other higher vertebrate and is greater than the 19 human ALDH genes currently reported. These included 8 polyploid ALDH genes and proteins: ALDH1A2 (chromosomes 11 and 26); ALDH1L2 (chromosomes 7 and 17); ALDH2, encoding mitochondrial ALDH2 (chromosomes 2 and 5); ALDH3A2 (chromosomes 4, 9 and 20), for which evidence for 5 genes was obtained; ALDH3B1 (chromosomes 3, 6 and 24); ALDH4A1 (chromosomes 12 and 22); ALDH6A1 (chromosomes 1, 6 and 15); and ALDH18A1 (chromosomes 19 and 28). In contrast, 7 salmon ALDH gene families (ALDH1A1, ALDH1A3, ALDH5, ALDH7, ALDH8, ALDH9 and ALDH16) possessed only one gene family member. Phylogenetic studies of salmon and rainbow trout ALDH3A2 genes and proteins suggested that salmonid gene tetraploidy has occurred in at least 2 distinct stages of ALDH3A2 gene evolution.


Asunto(s)
Aldehído Deshidrogenasa/genética , Poliploidía , Aldehído Oxidorreductasas/genética , Animales , Evolución Molecular , Humanos , Oncorhynchus mykiss , Filogenia , Salmón
4.
Biomolecules ; 8(4)2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297675

RESUMEN

Ceramide synthase 6 (CerS6, also known as LASS6) is one of the six members of ceramide synthase gene family in humans. Comparisons of CerS6 amino acid sequences and structures as well as of CerS6 gene structures/locations were conducted using data from several vertebrate genome projects. A specific role for the CerS6 gene and protein has been identified as the endoplasmic reticulum C14- and C16-ceramide synthase. Mammalian CerS6 proteins share 90⁻100% similarity among different species, but are only 22⁻63% similar to other CerS family members, suggesting that CerS6 is a distinct gene family. Sequence alignments, predicted transmembrane, lumenal and cytoplasmic segments and N-glycosylation sites were also investigated, resulting in identification of the key conserved residues, including the active site as well as C-terminus acidic and serine residues. Mammalian CerS6 genes contain ten exons, are primarily located on the positive strands and transcribed as two major isoforms. The human CERS6 gene promoter harbors a large CpG island (94 CpGs) and multiple transcription factor binding sites (TFBS), which support precise transcriptional regulation and signaling functions. Additional regulation is conferred by 15 microRNA (miRNA) target sites identified in the CERS6 3'-UTR region. Phylogenetic analysis of the vertebrate CerS1⁻6 gene families relationships supports a major role for the CerS6 enzyme that is strongly conserved throughout vertebrate evolution.


Asunto(s)
Evolución Molecular , Proteínas de la Membrana/genética , Filogenia , Isoformas de Proteínas/genética , Esfingosina N-Aciltransferasa/genética , Animales , Sitios de Unión , Islas de CpG/genética , Retículo Endoplásmico/genética , Humanos , Proteínas de la Membrana/química , Familia de Multigenes/genética , Regiones Promotoras Genéticas , Isoformas de Proteínas/química , Esfingosina N-Aciltransferasa/química , Vertebrados/genética
5.
3 Biotech ; 7(1): 22, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28401457

RESUMEN

IDS is responsible for the lysosomal degradation of heparan sulfate and dermatan sulfate and linked to an X-linked lysosomal storage disease, mucopolysaccharidosis 2 (MPS2), resulting in neurological damage and early death. Comparative IDS amino acid sequences and structures and IDS gene locations were examined using data from several vertebrate genome projects. Vertebrate IDS sequences shared 60-99% identities with each other. Human IDS showed 47% sequence identity with fruit fly (Drosophila melanogaster) IDS. Sequence alignments, key amino acid residues, N-glycosylation sites and conserved predicted secondary and tertiary structures were also studied, including signal peptide, propeptide and active site residues. Mammalian IDS genes usually contained 9 coding exons. The human IDS gene promoter contained a large CpG island (CpG46) and 5 transcription factor binding sites, whereas the 3'-UTR region contained 5 miRNA target sites. These may contribute to IDS gene regulation of expression in the brain and other neural tissues of the body. An IDS pseudogene (IDSP1) was located proximally to the IDS gene on the X-chromosome in primate genomes. Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate IDS gene. These suggested that IDS has originated in an invertebrate ancestral genome and retained throughout vertebrate evolution and conserved on marsupial and eutherian X-chromosomes, with the exception of rat Ids on chromosome 8.

6.
Comput Biol Chem ; 68: 71-77, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28257906

RESUMEN

At least 19 sulfatase genes have been reported on the human genome, including four arylsulfatase (ARS) genes (ARSD; ARSE; ARSF; ARSH) and a sterylsulfatase (STS) gene located together on the X-chromosome. Bioinformatic analyses of mammalian genomes were undertaken using known human STS and ARS amino acid sequences to study the evolution of these genes and proteins encoded on eutherian and marsupial genomes. Several domain regions and key residues were conserved including signal peptides, active site residues, metal (Ca2+) and substrate binding sequences, transmembranes and N-glycosylation sites. Phylogenetic analyses describe the relationships and potential origins of these genes during mammalian evolution. Primate ARSH enzymes lacked signal peptide sequences which may influence their biological functions. CpG117 and CpG92 were detected within the 5' region of the human STS and ARSD genes, respectively, and miR-205 within the 3'-UTR for the human STS gene, using bioinformatic methods A proposal is described for a primordial invertebrate STS-like gene serving as an ancestor for unequal cross over events generating the gene complex on the eutherian mammalian X-chromosome.


Asunto(s)
Arilsulfatasas/química , Arilsulfatasas/genética , Evolución Molecular , Genes Ligados a X/genética , Esteril-Sulfatasa/química , Esteril-Sulfatasa/genética , Secuencia de Aminoácidos , Animales , Humanos , Ratones , Alineación de Secuencia , Strongylocentrotus purpuratus/química , Strongylocentrotus purpuratus/genética
7.
Chem Biol Interact ; 276: 2-8, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27989597

RESUMEN

Vertebrate ALDH18A1 genes encode a bifunctional mitochondrial enzyme, catalyzing a 2-step conversion of glutamate to glutamyl semialdehyde, subsequently converted into proline, ornithine and arginine. Bioinformatic analyses of vertebrate and invertebrate genomes were undertaken using known ALDH18A1 amino acid sequences. G5K (glutamyl kinase) and GPR (glutamyl phosphate reductase) domain sequences were identified for all vertebrate and invertebrate genomes examined, whereas bacterial sequences encoded separate enzymes. Vertebrate ALDH18A1 (also called P5CS) sequences were highly conserved throughout vertebrate evolution. A mechanism for generating two major vertebrate ALDH18A1 isoforms is proposed with 'a' isoform containing Asn239-Val240 with wide tissue expression, whereas the 'b' isoform lacking the dipeptide has been reported in gut tissues. Phylogenetic analyses describe the relationships and potential origins of the ALDH18A1 gene during vertebrate and invertebrate evolution and a proposal for generating the bifunctional vertebrate and invertebrate ALDH18A1 gene from a bacterial operon (proBA) encoding G5K and GPR. A more recent Aldh18a1 gene duplication event has apparently occurred with a primordial rat genome.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Evolución Molecular , Aldehído Deshidrogenasa/genética , Secuencia de Aminoácidos , Animales , Bases de Datos Factuales , Genoma , Humanos , Invertebrados/clasificación , Invertebrados/genética , Datos de Secuencia Molecular , Filogenia , Dominios Proteicos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alineación de Secuencia , Vertebrados/clasificación , Vertebrados/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-29900035

RESUMEN

Glutamyl aminopeptidase (ENPEP) is a member of the M1 family of endopeptidases which are mammalian type II integral membrane zinc-containing endopeptidases. ENPEP is involved in the catabolic pathway of the renin-angiotensin system forming angiotensin III, which participates in blood pressure regulation and blood vessel formation. Comparative ENPEP amino acid sequences and structures and ENPEP gene locations were examined using data from several mammalian genome projects. Mammalian ENPEP sequences shared 71-98% identities. Five N-glycosylation sites were conserved for all mammalian ENPEP proteins examined although 9-18 sites were observed, in each case. Sequence alignments, key amino acid residues and predicted secondary and tertiary structures were also studied, including transmembrane and cytoplasmic sequences and active site residues. Highest levels of human ENPEP expression were observed in the terminal ileum of the small intestine and in the kidney cortex. Mammalian ENPEP genes contained 20 coding exons. The human ENPEP gene promoter and first coding exon contained a CpG island (CpG27) and at least 6 transcription factor binding sites, whereas the 3'-UTR region contained 7 miRNA target sites, which may contribute to the regulation of ENPEP gene expression in tissues of the body. Phylogenetic analyses examined the relationships of mammalian ENPEP genes and proteins, including primate, other eutherian, marsupial and monotreme sources, using chicken ENPEP as a primordial sequence for comparative purposes.

9.
Artículo en Inglés | MEDLINE | ID: mdl-28868326

RESUMEN

SLC9B genes and proteins are members of the sodium/lithium hydrogen antiporter family which function as solute exchangers within cellular membranes of mammalian tissues. SLC9B2 and SLC9B1 amino acid sequences and structures and SLC9B-like gene locations were examined using bioinformatic data from several vertebrate genome projects. Vertebrate SLC9B2 sequences shared 56-98% identity as compared with ∼50% identities with mammalian SLC9B1 sequences. Sequence alignments, key amino acid residues and conserved predicted transmembrane structures were also studied. Mammalian SLC9B2 and SLC9B1 genes usually contained 11 or 12 coding exons with differential tissue expression patterns: SLC9B2, broad tissue distribution; and SLC9B1, being testis specific. Transcription factor binding sites and CpG islands within the human SLC9B2 and SLC9B1 gene promoters were identified. Phylogenetic analyses suggested that SLC9B1 originated in an ancestral marsupial genome from a SLC9B2 gene duplication event.

10.
Chem Biol Interact ; 234: 12-7, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25549576

RESUMEN

Cytosolic and mitochondrial 10-formyltetrahydrofolate dehydrogenases are products of separate genes in vertebrates but only one such gene is present in invertebrates. There is a significant degree of sequence similarity between the two enzymes due to an apparent origin of the gene for the mitochondrial enzyme (ALDH1L2) from the duplication of the gene for the cytosolic enzyme (ALDH1L1). The primordial ALDH1L gene originated from a natural fusion of three unrelated genes, one of which was an aldehyde dehydrogenase. Such structural organization defined the catalytic mechanism of these enzymes, which is similar to that of aldehyde dehydrogenases. Here we report the analysis of ALDH1L1 and ALDH1L2 genes from different species and their phylogeny and evolution. We also performed sequence and structure comparison of ALDH1L enzymes possessing aldehyde dehydrogenase catalysis to those lacking this feature in an attempt to explain mechanistic differences between cytoplasmic ALDH1L1 and mitochondrial ALDH1L2 enzymes and to better understand their functional roles.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Citoplasma/enzimología , Citoplasma/metabolismo , Ácido Fólico/metabolismo , Mitocondrias/enzimología , Mitocondrias/metabolismo , Secuencia de Aminoácidos , Animales , Evolución Molecular , Humanos , Invertebrados/enzimología , Invertebrados/metabolismo , Filogenia , Vertebrados/embriología , Vertebrados/metabolismo , Pez Cebra/metabolismo
11.
Chem Biol Interact ; 234: 4-11, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25446856

RESUMEN

Vertebrate ALDH1A-like genes encode cytosolic enzymes capable of metabolizing all-trans-retinaldehyde to retinoic acid which is a molecular 'signal' guiding vertebrate development and adipogenesis. Bioinformatic analyses of vertebrate and invertebrate genomes were undertaken using known ALDH1A1, ALDH1A2 and ALDH1A3 amino acid sequences. Comparative analyses of the corresponding human genes provided evidence for distinct modes of gene regulation and expression with putative transcription factor binding sites (TFBS), CpG islands and micro-RNA binding sites identified for the human genes. ALDH1A-like sequences were identified for all mammalian, bird, lizard and frog genomes examined, whereas fish genomes displayed a more restricted distribution pattern for ALDH1A1 and ALDH1A3 genes. The ALDH1A1 gene was absent in many bony fish genomes examined, with the ALDH1A3 gene also absent in the medaka and tilapia genomes. Multiple ALDH1A1-like genes were identified in mouse, rat and marsupial genomes. Vertebrate ALDH1A1, ALDH1A2 and ALDH1A3 subunit sequences were highly conserved throughout vertebrate evolution. Comparative amino acid substitution rates showed that mammalian ALDH1A2 sequences were more highly conserved than for the ALDH1A1 and ALDH1A3 sequences. Phylogenetic studies supported an hypothesis for ALDH1A2 as a likely primordial gene originating in invertebrate genomes and undergoing sequential gene duplication to generate two additional genes, ALDH1A1 and ALDH1A3, in most vertebrate genomes.


Asunto(s)
Isoenzimas/genética , Retinal-Deshidrogenasa/genética , Vertebrados/genética , Familia de Aldehído Deshidrogenasa 1 , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Biología Computacional/métodos , Islas de CpG/genética , Evolución Molecular , Duplicación de Gen/genética , Humanos , Invertebrados , MicroARNs/genética , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Factores de Transcripción/genética
12.
Chem Biol Interact ; 202(1-3): 11-21, 2013 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-23247008

RESUMEN

Vertebrate ALDH2 genes encode mitochondrial enzymes capable of metabolizing acetaldehyde and other biological aldehydes in the body. Mammalian ALDH1B1, another mitochondrial enzyme sharing 72% identity with ALDH2, is also capable of metabolizing acetaldehyde but has a tissue distribution and pattern of activity distinct from that of ALDH2. Bioinformatic analyses of several vertebrate genomes were undertaken using known ALDH2 and ALDH1B1 amino acid sequences. Phylogenetic analysis of many representative vertebrate species (including fish, amphibians, birds and mammals) indicated the presence of ALDH1B1 in many mammalian species and in frogs (Xenopus tropicalis); no evidence was found for ALDH1B1 in the genomes of birds, reptiles or fish. Predicted vertebrate ALDH2 and ALDH1B1 subunit sequences and structures were highly conserved, including residues previously shown to be involved in catalysis and coenzyme binding for human ALDH2. Studies of ALDH1B1 sequences supported the hypothesis that the ALDH1B1 gene originated in early vertebrates from a retrotransposition of the vertebrate ALDH2 gene. Given the high degree of similarity between ALDH2 and ALDH1B1, it is surprising that individuals with an inactivating mutation in ALDH2 (ALDH2*2) do not exhibit a compensatory increase in ALDH1B1 activity. We hypothesized that the similarity between the two ALDHs would allow for dominant negative heterotetramerization between the inactive ALDH2 mutants and ALDH1B1. Computational-based molecular modeling studies examining predicted protein-protein interactions indicated that heterotetramerization between ALDH2 and ALDH1B1 subunits was highly probable and may partially explain a lack of compensation by ALDH1B1 in ALDH2(∗)2 individuals.


Asunto(s)
Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/química , Familia de Aldehído Deshidrogenasa 1 , Aldehído Deshidrogenasa Mitocondrial , Secuencia de Aminoácidos , Animales , Anuros , Simulación por Computador , Evolución Molecular , Genómica/métodos , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Alineación de Secuencia
13.
3 Biotech ; 2(1): 37-52, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22582156

RESUMEN

Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) functions as a platform and transport agent for lipoprotein lipase (LPL) which functions in the hydrolysis of chylomicrons, principally in heart, skeletal muscle and adipose tissue capillary endothelial cells. Previous reports of genetic deficiency for this protein have described severe chylomicronemia. Comparative GPIHBP1 amino acid sequences and structures and GPIHBP1 gene locations were examined using data from several mammalian genome projects. Mammalian GPIHBP1 genes usually contain four coding exons on the positive strand. Mammalian GPIHBP1 sequences shared 41-96% identities as compared with 9-32% sequence identities with other LY6-domain-containing human proteins (LY6-like). The human N-glycosylation site was predominantly conserved among other mammalian GPIHBP1 proteins except cow, dog and pig. Sequence alignments, key amino acid residues and conserved predicted secondary structures were also examined, including the N-terminal signal peptide, the acidic amino acid sequence region which binds LPL, the glycosylphosphatidylinositol linkage group, the Ly6 domain and the C-terminal α-helix. Comparative and phylogenetic studies of mammalian GPIHBP1 suggested that it originated in eutherian mammals from a gene duplication event of an ancestral LY6-like gene and subsequent integration of exon 2, which may have been derived from BCL11A (B-cell CLL/lymphoma 11A gene) encoding an extended acidic amino acid sequence. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13205-011-0026-4) contains supplementary material, which is available to authorized users.

14.
Biomolecules ; 2(3): 389-414, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24970143

RESUMEN

Platelet glycoprotein 4 (CD36) (or fatty acyl translocase [FAT], or scavenger receptor class B, member 3 [SCARB3]) is an essential cell surface and skeletal muscle outer mitochondrial membrane glycoprotein involved in multiple functions in the body. CD36 serves as a ligand receptor of thrombospondin, long chain fatty acids, oxidized low density lipoproteins (LDLs) and malaria-infected erythrocytes. CD36 also influences various diseases, including angiogenesis, thrombosis, atherosclerosis, malaria, diabetes, steatosis, dementia and obesity. Genetic deficiency of this protein results in significant changes in fatty acid and oxidized lipid uptake. Comparative CD36 amino acid sequences and structures and CD36 gene locations were examined using data from several vertebrate genome projects. Vertebrate CD36 sequences shared 53-100% identity as compared with 29-32% sequence identities with other CD36-like superfamily members, SCARB1 and SCARB2. At least eight vertebrate CD36 N-glycosylation sites were conserved which are required for membrane integration. Sequence alignments, key amino acid residues and predicted secondary structures were also studied. Three CD36 domains were identified including cytoplasmic, transmembrane and exoplasmic sequences. Conserved sequences included N- and C-terminal transmembrane glycines; and exoplasmic cysteine disulphide residues; TSP-1 and PE binding sites, Thr92 and His242, respectively; 17 conserved proline and 14 glycine residues, which may participate in forming CD36 'short loops'; and basic amino acid residues, and may contribute to fatty acid and thrombospondin binding. Vertebrate CD36 genes usually contained 12 coding exons. The human CD36 gene contained transcription factor binding sites (including PPARG and PPARA) contributing to a high gene expression level (6.6 times average). Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate CD36 gene with vertebrate SCARB1 and SCARB2 genes. These suggested that CD36 originated in an ancestral genome and was subsequently duplicated to form three vertebrate CD36 gene family members, SCARB1, SCARB2 and CD36.

15.
Cholesterol ; 2011: 781643, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22162806

RESUMEN

Bile-salt activated carboxylic ester lipase (CEL) is a major triglyceride, cholesterol ester and vitamin ester hydrolytic enzyme contained within pancreatic and lactating mammary gland secretions. Bioinformatic methods were used to predict the amino acid sequences, secondary and tertiary structures and gene locations for CEL genes, and encoded proteins using data from several vertebrate genome projects. A proline-rich and O-glycosylated 11-amino acid C-terminal repeat sequence (VNTR) previously reported for human and other higher primate CEL proteins was also observed for other eutherian mammalian CEL sequences examined. In contrast, opossum CEL contained a single C-terminal copy of this sequence whereas CEL proteins from platypus, chicken, lizard, frog and several fish species lacked the VNTR sequence. Vertebrate CEL genes contained 11 coding exons. Evidence is presented for tandem duplicated CEL genes for the zebrafish genome. Vertebrate CEL protein subunits shared 53-97% sequence identities; demonstrated sequence alignments and identities for key CEL amino acid residues; and conservation of predicted secondary and tertiary structures with those previously reported for human CEL. Phylogenetic analyses demonstrated the relationships and potential evolutionary origins of the vertebrate CEL family of genes which were related to a nematode carboxylesterase (CES) gene and five mammalian CES gene families.

16.
Artículo en Inglés | MEDLINE | ID: mdl-21561822

RESUMEN

Lipoprotein lipase (LIPL or LPL; E.C.3.1.1.34) serves a dual function as a triglyceride lipase of circulating chylomicrons and very-low-density lipoproteins (VLDL) and facilitates receptor-mediated lipoprotein uptake into heart, muscle and adipose tissue. Comparative LPL amino acid sequences and protein structures and LPL gene locations were examined using data from several vertebrate genome projects. Mammalian LPL genes usually contained 9 coding exons on the positive strand. Vertebrate LPL sequences shared 58-99% identity as compared with 33-49% sequence identities with other vascular triglyceride lipases, hepatic lipase (HL) and endothelial lipase (EL). Two human LPL N-glycosylation sites were conserved among seven predicted sites for the vertebrate LPL sequences examined. Sequence alignments, key amino acid residues and conserved predicted secondary and tertiary structures were also studied. A CpG island was identified within the 5'-untranslated region of the human LPL gene which may contribute to the higher than average (×4.5 times) level of expression reported. Phylogenetic analyses examined the relationships and potential evolutionary origins of vertebrate lipase genes, LPL, LIPG (encoding EL) and LIPC (encoding HL) which suggested that these have been derived from gene duplication events of an ancestral neutral lipase gene, prior to the appearance of fish during vertebrate evolution. Comparative divergence rates for these vertebrate sequences indicated that LPL is evolving more slowly (2-3 times) than for LIPC and LIPG genes and proteins.


Asunto(s)
Lipoproteína Lipasa/química , Lipoproteína Lipasa/genética , Lipoproteínas VLDL/metabolismo , Secuencia de Aminoácidos , Animales , Exones , Duplicación de Gen , Expresión Génica , Humanos , Lipasa/genética , Lipoproteína Lipasa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
17.
Chem Biol Interact ; 191(1-3): 113-21, 2011 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-21296057

RESUMEN

Mammalian ALDH3 genes (ALDH3A1, ALDH3A2, ALDH3B1 and ALDH3B2) encode enzymes of peroxidic and fatty aldehyde metabolism. ALDH3A1 also plays a major role in anterior eye tissue UV-filtration. BLAT and BLAST analyses were undertaken of several vertebrate genomes using rat, chicken and zebrafish ALDH3-like amino acid sequences. Predicted vertebrate ALDH3 sequences and structures were highly conserved, including residues involved in catalysis, coenzyme binding and enzyme structure as reported by Liu et al. [27] for rat ALDH3A1. Phylogeny studies of human, rat, opossum, platypus, chicken, xenopus and zebrafish ALDH3-like sequences supported three hypotheses: (1) the mammalian ALDH3A1 gene was generated by a tandem duplication event of an ancestral vertebrate ALDH3A2 gene; (2) multiple mammalian and chicken ALDH3B-like genes were generated by tandem duplication events within genomes of related species; and (3) vertebrate ALDH3A and ALDH3B genes were generated prior to the appearance of bony fish more than 500 million years ago.


Asunto(s)
Aldehído Deshidrogenasa/química , Aldehído Deshidrogenasa/genética , Biología Computacional/métodos , Evolución Molecular , Filogenia , Aldehído Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Animales , Exones/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia
18.
Chem Biol Interact ; 191(1-3): 122-8, 2011 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-21215736

RESUMEN

Folate coenzymes function as one-carbon group carriers in intracellular metabolic pathways. Folate-dependent reactions are compartmentalized within the cell and are catalyzed by two distinct groups of enzymes, cytosolic and mitochondrial. Some folate enzymes are present in both compartments and are likely the products of gene duplications. A well-characterized cytosolic folate enzyme, FDH (10-formyltetrahydro-folate dehydrogenase, ALDH1L1), contains a domain with significant sequence similarity to aldehyde dehydrogenases. This domain enables FDH to catalyze the NADP(+)-dependent conversion of short-chain aldehydes to corresponding acids in vitro. The aldehyde dehydrogenase-like reaction is the final step in the overall FDH mechanism, by which a tetrahydrofolate-bound formyl group is oxidized to CO(2) in an NADP(+)-dependent fashion. We have recently cloned and characterized another folate enzyme containing an ALDH domain, a mitochondrial FDH. Here the biological roles of the two enzymes, a comparison of the respective genes, and some potential evolutionary implications are discussed. The phylogenic analysis suggests that the vertebrate ALDH1L2 gene arose from a duplication event of the ALDH1L1 gene prior to the emergence of osseous fish >500 millions years ago.


Asunto(s)
Aldehído Deshidrogenasa/química , Aldehído Deshidrogenasa/metabolismo , Evolución Molecular , Ácido Fólico/metabolismo , Filogenia , Homología de Secuencia de Aminoácido , Aldehído Deshidrogenasa/genética , Animales , Exones/genética , Genómica , Humanos , Invertebrados/enzimología , Invertebrados/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH
19.
Genetica ; 139(3): 291-304, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21267636

RESUMEN

Endothelial lipase (gene: LIPG; enzyme: EL) is one of three members of the triglyceride lipase family that contributes to lipoprotein degradation within the circulation system and plays a major role in HDL metabolism in the body. In this study, in silico methods were used to predict the amino acid sequences, secondary and tertiary structures, and gene locations for LIPG genes and encoded proteins using data from several vertebrate genome projects. LIPG is located on human chromosome 18 and is distinct from other human 'neutral lipase' genes, hepatic lipase (gene: LIPC; enzyme: HL) and lipoprotein lipase (gene: LPL; enzyme: LPL) examined. Vertebrate LIPG genes usually contained 10 coding exons located on the positive strand for most primates, as well as for horse, bovine, opossum, platypus and frog genomes. The rat LIPG gene however contained only 9 coding exons apparently due to the presence of a 'stop' codon' within exon 9. Vertebrate EL protein subunits shared 58-97% sequence identity as compared with 38-45% sequence identities with human HL and LPL. Four previously reported human EL N-glycosylation sites were predominantly conserved among the 10 potential N-glycosylation sites observed for the vertebrate EL sequences examined. Sequence alignments and identities for key EL amino acid residues were observed as well as conservation of predicted secondary and tertiary structures with those previously reported for horse pancreatic lipase (PL) (Bourne et al. 1994). Several potential sites for regulating LIPG gene expression were observed including CpG islands near the LIPG gene promoter and a predicted microRNA binding site near the 3'-untranslated region. Promoter regions containing functional polymorphisms that regulate HDL cholesterol in baboons were conserved among primates but not retained between primates and rodents. Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate LIPG gene subfamily with other neutral triglyceride lipase gene families, LIPC and LPL. It is apparent that the triglyceride lipase ancestral gene for the vertebrate LIPG gene predated the appearance of fish during vertebrate evolution >500 million years ago.


Asunto(s)
Evolución Biológica , Células Endoteliales/enzimología , Lipasa/genética , Lipasa/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Perros , Orden Génico , Cobayas , Humanos , Lipasa/química , Hígado/enzimología , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Páncreas/enzimología , Filogenia , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Ratas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Vertebrados/clasificación
20.
3 Biotech ; 1(2): 99-109, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22582164

RESUMEN

Cholesterol ester lipase (LIPA; EC 3.1.1.13) and cholesterol 25-hydroxylase (CH25H; EC 1.14.99.48) play essential role in cholesterol metabolism in the body by hydrolysing cholesteryl esters and triglycerides within lysosomes (LIPA) and catalysing the formation of 25-hydroxycholesterol from cholesterol (CH25H) which acts to repress cholesterol biosynthesis. Bioinformatic methods were used to predict the amino acid sequences, structures and genomic features of several vertebrate LIPA and CH25H genes and proteins, and to examine the phylogeny of vertebrate LIPA. Amino acid sequence alignments and predicted subunit structures enabled the identification of key sequences previously reported for human LIPA and CH25H and transmembrane structures for vertebrate CH25H sequences. Vertebrate LIPA and CH25H genes were located in tandem on all vertebrate genomes examined and showed several predicted transcription factor binding sites and CpG islands located within the 5' regions of the human genes. Vertebrate LIPA genes contained nine coding exons, while all vertebrate CH25H genes were without introns. Phylogenetic analysis demonstrated the distinct nature of the vertebrate LIPA gene and protein family in comparison with other vertebrate acid lipases and has apparently evolved from an ancestral LIPA gene which predated the appearance of vertebrates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13205-011-0013-9) contains supplementary material, which is available to authorized users.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA