Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11940, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789658

RESUMEN

The classic ketogenic diet is an effective treatment option for drug-resistant epilepsy, but its high fat content challenges patient compliance. Optimizing liver ketone production guided by a method comparing substrates for their ketogenic potential may help to reduce the fat content of the diet without loss in ketosis induction. Here, we present a liver cell assay measuring the ß-hydroxybutyrate (ßHB) yield from fatty acid substrates. Even chain albumin-conjugated fatty acids comprising between 4 and 18 carbon atoms showed a sigmoidal concentration-ßHB response curve (CRC) whereas acetate and omega-3 PUFAs produced no CRC. While CRCs were not distinguished by their half-maximal effective concentration (EC50), they differed by maximum response, which related inversely to the carbon chain length and was highest for butyrate. The assay also suitably assessed the ßHB yield from fatty acid blends detecting shifts in maximum response from exchanging medium chain fatty acids for long chain fatty acids. The assay further detected a dual role for butyrate and hexanoic acid as ketogenic substrate at high concentration and ketogenic enhancer at low concentration, augmenting the ßHB yield from oleic acid and a fatty acid blend. The assay also found propionate to inhibit ketogenesis from oleic acid and a fatty acid blend at low physiological concentration. Although the in vitro assay shows promise as a tool to optimize the ketogenic yield of a fat blend, its predictive value requires human validation.


Asunto(s)
Ácido 3-Hidroxibutírico , Dieta Cetogénica , Hepatocitos , Cetonas , Dieta Cetogénica/métodos , Humanos , Hepatocitos/metabolismo , Cetonas/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Epilepsia/dietoterapia , Epilepsia/metabolismo , Ácidos Grasos/metabolismo , Epilepsia Refractaria/dietoterapia , Epilepsia Refractaria/metabolismo
2.
PLoS One ; 14(5): e0217477, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31136621

RESUMEN

INTRODUCTION: Anorectal malformations (ARM) are rare congenital malformations, resulting from disturbed hindgut development. A genetic etiology has been suggested, but evidence for the involvement of specific genes is scarce. We evaluated the contribution of rare and low-frequency coding variants in ARM etiology, assuming a multifactorial model. METHODS: We analyzed 568 Caucasian ARM patients and 1,860 population-based controls using the Illumina HumanExome Beadchip array, which contains >240,000 rare and low-frequency coding variants. GenomeStudio clustering and calling was followed by re-calling of 'no-calls' using zCall for patients and controls simultaneously. Single variant and gene-based analyses were performed to identify statistically significant associations, applying Bonferroni correction. Following an extra quality control step, candidate variants were selected for validation using Sanger sequencing. RESULTS: When we applied a MAF of ≥1.0%, no variants or genes showed statistically significant associations with ARM. Using a MAF cut-off at 0.4%, 13 variants initially reached statistical significance, but had to be discarded upon further inspection: ten variants represented calling errors of the software, while the minor alleles of the remaining three variants were not confirmed by Sanger sequencing. CONCLUSION: Our results show that rare and low-frequency coding variants with large effect sizes, present on the exome chip do not contribute to ARM etiology.


Asunto(s)
Malformaciones Anorrectales/genética , Exoma , Variación Genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Adulto , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...