Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
1.
Physiol Plant ; 176(2): e14306, 2024.
Article En | MEDLINE | ID: mdl-38659135

Chlorophyll fluorescence is a ubiquitous tool in basic and applied plant science research. Various standard commercial instruments are available for characterization of photosynthetic material like leaves or microalgae, most of which integrate the overall fluorescence signals above a certain cut-off wavelength. However, wavelength-resolved (fluorescence signals appearing at different wavelengths having different time dependent decay) signals contain vast information required to decompose complex signals and processes into their underlying components that can untangle the photo-physiological process of photosynthesis. Hence, to address this we describe an advanced chlorophyll fluorescence spectrometer - ChloroSpec - allowing three-dimensional simultaneous detection of fluorescence intensities at different wavelengths in a time-resolved manner. We demonstrate for a variety of typical examples that most of the generally used fluorescence parameters are strongly wavelength dependent. This indicates a pronounced heterogeneity and a highly dynamic nature of the thylakoid and the photosynthetic apparatus under actinic illumination. Furthermore, we provide examples of advanced global analysis procedures integrating this three-dimensional signal and relevant information extracted from them that relate to the physiological properties of the organism. This conveniently obtained broad range of data can make ChloroSpec a new standard tool in photosynthesis research.


Chlorophyll , Photosynthesis , Spectrometry, Fluorescence , Chlorophyll/metabolism , Spectrometry, Fluorescence/methods , Spectrometry, Fluorescence/instrumentation , Photosynthesis/physiology , Plant Leaves/metabolism , Fluorescence , Thylakoids/metabolism
2.
J Phys Chem B ; 128(15): 3575-3584, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38569137

Observations of low-lying dark states in several photosynthetic complexes challenge our understanding of the mechanisms behind their efficient energy transfer processes. Computational models are necessary for providing novel insights into the nature and function of dark states, especially since these are not directly accessible in spectroscopy experiments. Here, we will focus on signatures of dark-type states in chlorosomes, a light-harvesting complex from green sulfur bacteria well-known for uniting a broad absorption band with very efficient energy transfer. In agreement with experiments, our simulations of two-dimensional electronic spectra capture the ultrafast exciton transfer occurring in 100s of femtoseconds within a single chlorosome cylinder. The sub-100 fs process corresponds to relaxation within the single-excitation manifold in a single chlorosome tube, where all initially created populations in the bright exciton states are quickly transferred to dark-type exciton states. Structural inhomogeneities on the local scale cause a redistribution of the oscillator strength, leading to the emergence of these dark-type exciton states, which dominate ultrafast energy transfer. The presence of the dark-type exciton states suppresses energy loss from an isolated chlorosome via fluorescence quenching, as observed experimentally. Our results further question whether relaxation to dark-exciton states is a leading process or merely competes with transfer to the baseplate within the photosynthetic apparatus of green sulfur bacteria.

3.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38612934

We establish a general kinetic scheme for the energy transfer and radical-pair dynamics in photosystem I (PSI) of Chlamydomonas reinhardtii, Synechocystis PCC6803, Thermosynechococcus elongatus and Spirulina platensis grown under white-light conditions. With the help of simultaneous target analysis of transient-absorption data sets measured with two selective excitations, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described as a Bulk Chl a in equilibrium with a higher-energy Chl a, one or two Red Chl a and a reaction-center compartment (WL-RC). Three radical pairs (RPs) have been resolved with very similar properties in the four model organisms. The charge separation is virtually irreversible with a rate of ≈900 ns-1. The second rate, of RP1 → RP2, ranges from 70-90 ns-1 and the third rate, of RP2 → RP3, is ≈30 ns-1. Since RP1 and the Red Chl a are simultaneously present, resolving the RP1 properties is challenging. In Chlamydomonas reinhardtii, the excited WL-RC and Bulk Chl a compartments equilibrate with a lifetime of ≈0.28 ps, whereas the Red and the Bulk Chl a compartments equilibrate with a lifetime of ≈2.65 ps. We present a description of the thermodynamic properties of the model organisms at room temperature.


Chlamydomonas reinhardtii , Photosystem I Protein Complex , Chlorophyll A , Energy Transfer , Kinetics
4.
Phys Chem Chem Phys ; 26(22): 15856-15867, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38546236

Chlorosomes, the photosynthetic antenna complexes of green sulfur bacteria, are paradigms for light-harvesting elements in artificial designs, owing to their efficient energy transfer without protein participation. We combined magic angle spinning (MAS) NMR, optical spectroscopy and cryogenic electron microscopy (cryo-EM) to characterize the structure of chlorosomes from a bchQ mutant of Chlorobaculum tepidum. The chlorosomes of this mutant have a more uniform composition of bacteriochlorophyll (BChl) with a predominant homolog, [8Ethyl, 12Ethyl] BChl c, compared to the wild type (WT). Nearly complete 13C chemical shift assignments were obtained from well-resolved homonuclear 13C-13C RFDR data. For proton assignments heteronuclear 13C-1H (hCH) data sets were collected at 1.2 GHz spinning at 60 kHz. The CHHC experiments revealed intermolecular correlations between 132/31, 132/32, and 121/31, with distance constraints of less than 5 Å. These constraints indicate the syn-anti parallel stacking motif for the aggregates. Fourier transform cryo-EM data reveal an axial repeat of 1.49 nm for the helical tubular aggregates, perpendicular to the inter-tube separation of 2.1 nm. This axial repeat is different from WT and is in line with BChl syn-anti stacks running essentially parallel to the tube axis. Such a packing mode is in agreement with the signature of the Qy band in circular dichroism (CD). Combining the experimental data with computational insight suggests that the packing for the light-harvesting function is similar between WT and bchQ, while the chirality within the chlorosomes is modestly but detectably affected by the reduced compositional heterogeneity in bchQ.


Bacteriochlorophylls , Chlorobi , Chlorobi/genetics , Chlorobi/metabolism , Bacteriochlorophylls/chemistry , Mutation , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/genetics , Cryoelectron Microscopy , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
Photosynth Res ; 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38538911

The largest light-harvesting antenna in nature, the chlorosome, is a heterogeneous helical BChl self-assembly that has evolved in green bacteria to harvest light for performing photosynthesis in low-light environments. Guided by NMR chemical shifts and distance constraints for Chlorobaculum tepidum wild-type chlorosomes, the two contrasting packing modes for syn-anti parallel stacks of BChl c to form polar 2D arrays, with dipole moments adding up, are explored. Layered assemblies were optimized using local orbital density functional and plane wave pseudopotential methods. The packing mode with the lowest energy contains syn-anti and anti-syn H-bonding between stacks. It can accommodate R and S epimers, and side chain variability. For this packing, a match with the available EM data on the subunit axial repeat and optical data is obtained with multiple concentric cylinders for a rolling vector with the stacks running at an angle of 21° to the cylinder axis and with the BChl dipole moments running at an angle ߠ∼ 55° to the tube axis, in accordance with optical data. A packing mode involving alternating syn and anti parallel stacks that is at variance with EM appears higher in energy. A weak cross-peak at -6 ppm in the MAS NMR with 50 kHz spinning, assigned to C-181, matches the shift of antiparallel dimers, which possibly reflects a minor impurity-type fraction in the self-assembled BChl c.

6.
iScience ; 26(9): 107650, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37680463

We establish a general kinetic scheme for energy transfer and trapping in the photosystem I (PSI) of cyanobacteria grown under white light (WL) or far-red light (FRL) conditions. With the help of simultaneous target analysis of all emission and transient absorption datasets measured in five cyanobacterial strains, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described by Bulk Chl a, two Red Chl a, and a reaction center compartment (WL-RC). The FRL-PSI contains two additional Chl f compartments. The lowest excited state of the FRL-RC is downshifted by ≈ 29 nm. The rate of charge separation drops from ≈900 ns-1 in WL-RC to ≈300 ns-1 in FRL-RC. The delayed trapping in the FRL-PSI (≈130 ps) is explained by uphill energy transfer from the Chl f compartments with Gibbs free energies of ≈kBT below that of the FRL-RC.

7.
J Phys Chem B ; 127(34): 7487-7496, 2023 Aug 31.
Article En | MEDLINE | ID: mdl-37594912

Chlorosomes from green bacteria perform the most efficient light capture and energy transfer, as observed among natural light-harvesting antennae. Hence, their unique functional properties inspire developments in artificial light-harvesting and molecular optoelectronics. We examine two distinct organizations of the molecular building blocks as proposed in the literature, demonstrating how these organizations alter light capture and energy transfer, which can serve as a mechanism that the bacteria utilize to adapt to changes in light conditions. Spectral simulations of polarization-resolved two-dimensional electronic spectra unravel how changes in the helicity of chlorosomal aggregates alter energy transfer. We show that ultrafast anisotropy decay presents a spectral signature that reveals contrasting energy pathways in different chlorosomes.

8.
J Phys Chem B ; 127(35): 7581-7589, 2023 Sep 07.
Article En | MEDLINE | ID: mdl-37611240

The antenna complex of green sulfur bacteria, the chlorosome, is one of the most efficient supramolecular systems for efficient long-range exciton transfer in nature. Femtosecond transient absorption experiments provide new insight into how vibrationally induced quantum overlap between exciton states supports highly efficient long-range exciton transfer in the chlorosome of Chlorobium tepidum. Our work shows that excitation energy is delocalized over the chlorosome in <1 ps at room temperature. The following exciton transfer to the baseplate occurs in ∼3 to 5 ps, in line with earlier work also performed at room temperature, but significantly faster than at the cryogenic temperatures used in previous studies. This difference can be attributed to the increased vibrational motion at room temperature. We observe a so far unknown impact of the excitation photon energy on the efficiency of this process. This dependency can be assigned to distinct optical domains due to structural disorder, combined with an exciton trapping channel competing with exciton transfer toward the baseplate. An oscillatory transient signal damped in <1 ps has the highest intensity in the case of the most efficient exciton transfer to the baseplate. These results agree well with an earlier computational finding of exciton transfer driven by low-frequency rotational motion of molecules in the chlorosome. Such an exciton transfer process belongs to the quantum coherent regime, for which the Förster theory for intermolecular exciton transfer does not apply. Our work hence strongly indicates that structural flexibility is important for efficient long-range exciton transfer in chlorosomes.

9.
New Phytol ; 239(5): 1869-1886, 2023 09.
Article En | MEDLINE | ID: mdl-37429324

In natural environments, plants are exposed to rapidly changing light. Maintaining photosynthetic efficiency while avoiding photodamage requires equally rapid regulation of photoprotective mechanisms. We asked what the operation frequency range of regulation is in which plants can efficiently respond to varying light. Chlorophyll fluorescence, P700, plastocyanin, and ferredoxin responses of wild-types Arabidopsis thaliana were measured in oscillating light of various frequencies. We also investigated the npq1 mutant lacking violaxanthin de-epoxidase, the npq4 mutant lacking PsbS protein, and the mutants crr2-2, and pgrl1ab impaired in different pathways of the cyclic electron transport. The fastest was the PsbS-regulation responding to oscillation periods longer than 10 s. Processes involving violaxanthin de-epoxidase dampened changes in chlorophyll fluorescence in oscillation periods of 2 min or longer. Knocking out the PGR5/PGRL1 pathway strongly reduced variations of all monitored parameters, probably due to congestion in the electron transport. Incapacitating the NDH-like pathway only slightly changed the photosynthetic dynamics. Our observations are consistent with the hypothesis that nonphotochemical quenching in slow light oscillations involves violaxanthin de-epoxidase to produce, presumably, a largely stationary level of zeaxanthin. We interpret the observed dynamics of photosystem I components as being formed in slow light oscillations partially by thylakoid remodeling that modulates the redox rates.


Arabidopsis Proteins , Arabidopsis , Photosynthetic Reaction Center Complex Proteins , Electron Transport , Photosystem II Protein Complex/metabolism , Light , Photosynthesis/physiology , Arabidopsis/metabolism , Chlorophyll/metabolism , Light-Harvesting Protein Complexes/metabolism , Mutation/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Photosynthetic Reaction Center Complex Proteins/genetics , Membrane Proteins/metabolism
10.
J Phys Chem B ; 127(5): 1097-1109, 2023 Feb 09.
Article En | MEDLINE | ID: mdl-36696537

Chlorosomes are supramolecular aggregates that contain thousands of bacteriochlorophyll molecules. They perform the most efficient ultrafast excitation energy transfer of all natural light-harvesting complexes. Their broad absorption band optimizes light capture. In this study, we identify the microscopic sources of the disorder causing the spectral width and reveal how it affects the excited state properties and the optical response of the system. We combine molecular dynamics, quantum chemical calculations, and response function calculations to achieve this goal. The predicted linear and two-dimensional electronic spectra are found to compare well with experimental data reproducing all key spectral features. Our analysis of the microscopic model reveals the interplay of static and dynamic disorder from the molecular perspective. We find that hydrogen bonding motifs are essential for a correct description of the spectral line shape. Furthermore, we find that exciton delocalization over tens to hundreds of molecules is consistent with the two-dimensional electronic spectra.

12.
Nat Commun ; 11(1): 6388, 2020 12 15.
Article En | MEDLINE | ID: mdl-33319777

Evergreen conifers in boreal forests can survive extremely cold (freezing) temperatures during long dark winter and fully recover during summer. A phenomenon called "sustained quenching" putatively provides photoprotection and enables their survival, but its precise molecular and physiological mechanisms are not understood. To unveil them, here we have analyzed seasonal adjustment of the photosynthetic machinery of Scots pine (Pinus sylvestris) trees by monitoring multi-year changes in weather, chlorophyll fluorescence, chloroplast ultrastructure, and changes in pigment-protein composition. Analysis of Photosystem II and Photosystem I performance parameters indicate that highly dynamic structural and functional seasonal rearrangements of the photosynthetic apparatus occur. Although several mechanisms might contribute to 'sustained quenching' of winter/early spring pine needles, time-resolved fluorescence analysis shows that extreme down-regulation of photosystem II activity along with direct energy transfer from photosystem II to photosystem I play a major role. This mechanism is enabled by extensive thylakoid destacking allowing for the mixing of PSII with PSI complexes. These two linked phenomena play crucial roles in winter acclimation and protection.


Energy Transfer , Photosynthesis/physiology , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Pinus sylvestris/metabolism , Acclimatization , Chlorophyll , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Fluorescence , Kinetics , Light , Photochemical Processes , Photosystem I Protein Complex/chemistry , Photosystem II Protein Complex/chemistry , Seasons , Temperature , Thylakoids/metabolism , Time Factors , Trees/metabolism
13.
Open Biol ; 10(9): 200144, 2020 09.
Article En | MEDLINE | ID: mdl-32931722

Non-photochemical quenching (NPQ) is an important photoprotective mechanism in plants and algae. Although the process is extensively studied, little is known about its relationship with ultrastructural changes of the thylakoid membranes. In order to better understand this relationship, we studied the effects of illumination on the organization of thylakoid membranes in Monstera deliciosa leaves. This evergreen species is known to exhibit very large NPQ and to possess giant grana with dozens of stacked thylakoids. It is thus ideally suited for small-angle neutron scattering measurements (SANS)-a non-invasive technique, which is capable of providing spatially and statistically averaged information on the periodicity of the thylakoid membranes and their rapid reorganizations in vivo. We show that NPQ-inducing illumination causes a strong decrease in the periodic order of granum thylakoid membranes. Development of NPQ and light-induced ultrastructural changes, as well as the relaxation processes, follow similar kinetic patterns. Surprisingly, whereas NPQ is suppressed by diuron, it impedes only the relaxation of the structural changes and not its formation, suggesting that structural changes do not cause but enable NPQ. We also demonstrate that the diminishment of SANS peak does not originate from light-induced redistribution and reorientation of chloroplasts inside the cells.


Araceae/chemistry , Intracellular Membranes/chemistry , Neutrons , Plant Leaves/chemistry , Scattering, Small Angle , Thylakoids/genetics , X-Ray Diffraction , Intracellular Membranes/metabolism , Light , Thylakoids/metabolism
14.
Photosynth Res ; 144(2): 195-208, 2020 May.
Article En | MEDLINE | ID: mdl-32266611

Non-photochemical quenching (NPQ) in photosynthetic organisms provides the necessary photoprotection that allows them to cope with largely and quickly varying light intensities. It involves deactivation of excited states mainly at the level of the antenna complexes of photosystem II using still largely unknown molecular mechanisms. In higher plants the main contribution to NPQ is the so-called qE-quenching, which can be switched on and off in a few seconds. This quenching mechanism is affected by the low pH-induced activation of the small membrane protein PsbS which interacts with the major light-harvesting complex of photosystem II (LHCII). We are reporting here on a mechanistic study of the PsbS-induced LHCII quenching using ultrafast time-resolved chlorophyll (Chl) fluorescence. It is shown that the PsbS/LHCII interaction in reconstituted proteoliposomes induces highly effective and specific quenching of the LHCII excitation by a factor ≥ 20 via Chl-Chl charge-transfer (CT) state intermediates which are weakly fluorescent. Their characteristics are very broad fluorescence bands pronouncedly red-shifted from the typical unquenched LHCII fluorescence maximum. The observation of PsbS-induced Chl-Chl CT-state emission from LHCII in the reconstituted proteoliposomes is highly reminiscent of the in vivo quenching situation and also of LHCII quenching in vitro in aggregated LHCII, indicating a similar quenching mechanism in all those situations. The PsbS mutant lacking the two proton sensing Glu residues induced significant, but much smaller, quenching than wild type. Added zeaxanthin had only minor effects on the yield of quenching in the proteoliposomes. Overall our study shows that PsbS co-reconstituted with LHCII in liposomes represents an excellent in vitro model system with characteristics that are reflecting closely the in vivo qE-quenching situation.


Arabidopsis Proteins/chemistry , Arabidopsis/chemistry , Light-Harvesting Protein Complexes/chemistry , Photosystem II Protein Complex/chemistry , Proteolipids/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chlorophyll/chemistry , Chlorophyll/metabolism , Fluorescence , Hydrogen-Ion Concentration , Light-Harvesting Protein Complexes/genetics , Light-Harvesting Protein Complexes/metabolism , Mutation , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Spectrometry, Fluorescence , Thylakoids/chemistry , Zeaxanthins/chemistry
15.
Photosynth Res ; 144(2): 171-193, 2020 May.
Article En | MEDLINE | ID: mdl-32307623

Light-harvesting complex II (LHCII) is the major antenna complex in higher plants and green algae. It has been suggested that a major part of the excited state energy dissipation in the so-called "non-photochemical quenching" (NPQ) is located in this antenna complex. We have performed an ultrafast kinetics study of the low-energy fluorescent states related to quenching in LHCII in both aggregated and the crystalline form. In both sample types the chlorophyll (Chl) excited states of LHCII are strongly quenched in a similar fashion. Quenching is accompanied by the appearance of new far-red (FR) fluorescence bands from energetically low-lying Chl excited states. The kinetics of quenching, its temperature dependence down to 4 K, and the properties of the FR-emitting states are very similar both in LHCII aggregates and in the crystal. No such FR-emitting states are found in unquenched trimeric LHCII. We conclude that these states represent weakly emitting Chl-Chl charge-transfer (CT) states, whose formation is part of the quenching process. Quantum chemical calculations of the lowest energy exciton and CT states, explicitly including the coupling to the specific protein environment, provide detailed insight into the chemical nature of the CT states and the mechanism of CT quenching. The experimental data combined with the results of the calculations strongly suggest that the quenching mechanism consists of a sequence of two proton-coupled electron transfer steps involving the three quenching center Chls 610/611/612. The FR-emitting CT states are reaction intermediates in this sequence. The polarity-controlled internal reprotonation of the E175/K179 aa pair is suggested as the switch controlling quenching. A unified model is proposed that is able to explain all known conditions of quenching or non-quenching of LHCII, depending on the environment without invoking any major conformational changes of the protein.


Chlorophyll/chemistry , Light-Harvesting Protein Complexes/chemistry , Chlorophyll/metabolism , Crystallization , Electron Transport , Fluorescence , Kinetics , Light-Harvesting Protein Complexes/metabolism , Models, Chemical , Models, Molecular , Quantum Theory , Signal-To-Noise Ratio , Spectrometry, Fluorescence/methods , Spinacia oleracea/chemistry , Temperature
16.
Photosynth Res ; 140(3): 355-369, 2019 Jun.
Article En | MEDLINE | ID: mdl-30478711

Photosynthesis starts when a pigment in the photosynthetic antennae absorbs a photon. The electronic excitation energy is then transferred through the network of light-harvesting pigments to special chlorophyll (Chl) molecules in the reaction centres, where electron transfer is initiated. Energy transfer and primary electron transfer processes take place on timescales ranging from femtoseconds to nanoseconds, and can be monitored in real time via time-resolved fluorescence spectroscopy. This method is widely used for measurements on unicellular photosynthetic organisms, isolated photosynthetic membranes, and individual complexes. Measurements on intact leaves remain a challenge due to their high structural heterogeneity, high scattering, and high optical density, which can lead to optical artefacts. However, detailed information on the dynamics of these early steps, and the underlying structure-function relationships, is highly informative and urgently required in order to get deeper insights into the physiological regulation mechanisms of primary photosynthesis. Here, we describe a current methodology of time-resolved fluorescence measurements on intact leaves in the picosecond to nanosecond time range. Principles of fluorescence measurements on intact leaves, possible sources of alterations of fluorescence kinetics and the ways to overcome them are addressed. We also describe how our understanding of the organisation and function of photosynthetic proteins and energy flow dynamics in intact leaves can be enriched through the application of time-resolved fluorescence spectroscopy on leaves. For that, an example of a measurement on Zea mays leaves is presented.


Electron Transport , Energy Transfer , Spectrometry, Fluorescence , Zea mays/chemistry , Chlorophyll/metabolism , Fluorescence , Photons , Photosynthesis , Plant Leaves/chemistry , Plant Leaves/physiology , Zea mays/physiology
17.
Proc Natl Acad Sci U S A ; 114(18): 4828-4832, 2017 05 02.
Article En | MEDLINE | ID: mdl-28416696

Nonphotochemical quenching (NPQ) is the process that protects the photosynthetic apparatus of plants and algae from photodamage by dissipating as heat the energy absorbed in excess. Studies on NPQ have almost exclusively focused on photosystem II (PSII), as it was believed that NPQ does not occur in photosystem I (PSI). Recently, Ballottari et al. [Ballottari M, et al. (2014) Proc Natl Acad Sci USA 111:E2431-E2438], analyzing PSI particles isolated from an Arabidopsis thaliana mutant that accumulates zeaxanthin constitutively, have reported that this xanthophyll can efficiently induce chlorophyll fluorescence quenching in PSI. In this work, we have checked the biological relevance of this finding by analyzing WT plants under high-light stress conditions. By performing time-resolved fluorescence measurements on PSI isolated from Arabidopsis thaliana WT in dark-adapted and high-light-stressed (NPQ) states, we find that the fluorescence kinetics of both PSI are nearly identical. To validate this result in vivo, we have measured the kinetics of PSI directly on leaves in unquenched and NPQ states; again, no differences were observed. It is concluded that PSI does not undergo NPQ in biologically relevant conditions in Arabidopsis thaliana The possible role of zeaxanthin in PSI photoprotection is discussed.


Arabidopsis/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Zeaxanthins/metabolism
18.
Biochim Biophys Acta ; 1857(6): 840-7, 2016 Jun.
Article En | MEDLINE | ID: mdl-26869375

The global rise in sea surface temperatures causes regular exposure of corals to high temperature and high light stress, leading to worldwide disastrous coral bleaching events (loss of symbiotic dinoflagellates (Symbiodinium) from reef-building corals). Our picosecond chlorophyll fluorescence experiments on cultured Symbiodinium clade C cells exposed to coral bleaching conditions uncovered the transformations of the alga's photosynthetic apparatus (PSA) that activate an extremely efficient non-photochemical "super-quenching" mechanism. The mechanism is associated with a transition from an initially heterogeneous photosystem II (PSII) pool to a homogeneous "spillover" pool, where nearly all excitation energy is transferred to photosystem I (PSI). There, the inherently higher stability of PSI and high quenching efficiency of P(700)(+) allow dumping of PSII excess excitation energy into heat, resulting in almost complete cessation of photosynthetic electron transport (PET). This potentially reversible "super-quenching" mechanism protects the PSA against destruction at the cost of a loss of photosynthetic activity. We suggest that the inhibition of PET and the consequent inhibition of organic carbon production (e.g. sugars) in the symbiotic Symbiodinium provide a trigger for the symbiont expulsion, i.e. bleaching.


Anthozoa/parasitology , Dinoflagellida/physiology , Stress, Physiological/physiology , Symbiosis/physiology , Temperature , Animals , Chlorophyll/metabolism , Dinoflagellida/metabolism , Dinoflagellida/ultrastructure , Electron Transport/radiation effects , Kinetics , Light , Luminescent Measurements/methods , Microscopy, Electron, Transmission , Models, Biological , Oxidation-Reduction/radiation effects , Photosynthesis/radiation effects , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Thylakoids/metabolism , Thylakoids/radiation effects , Time Factors
19.
Photosynth Res ; 127(1): 109-16, 2016 Jan.
Article En | MEDLINE | ID: mdl-26168990

The thylakoid membrane protein PsbS is critical for quenching excessive excitation energy in mechanisms that involve the light-harvesting complexes of photosystem II. Liposomes of thylakoid lipids have been shown to be a very good platform to study photosynthetic membrane proteins and their interactions. In this study, we simultaneously refolded and reconstituted functional pea PsbS into liposomes of thylakoid lipids starting from denatured expressed protein. Intrinsic fluorescence spectroscopy, trypsin digestion, and circular dichroism spectroscopy were used to characterize the native state of PsbS in the proteoliposomes. The functionality of refolded PsbS was further demonstrated by its effect on the fluorescence quenching of the major antenna system of photosystem II (LHCII) co-inserted into the liposomes. The fluorescence yield of native trimeric LHCII was lowered by PsbS by 50% at neutral pH and by a further 25% upon lowering the pH to 4.5. Furthermore, the acid-induced fluorescence reduction was completely reversed by addition of N,N'-dicyclohexylcarbodiimide, an inhibitor of protein protonation. These results indicate that reconstituted PsbS induces strong quenching of LHCII sensing changes in local pH via its protonation sites.


Arabidopsis Proteins/chemistry , Light-Harvesting Protein Complexes/chemistry , Liposomes/chemistry , Photosystem II Protein Complex/chemistry , Thylakoids/chemistry , Amino Acid Sequence , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Circular Dichroism , Dicyclohexylcarbodiimide/chemistry , Fluorescence , Hydrogen-Ion Concentration , Light-Harvesting Protein Complexes/genetics , Light-Harvesting Protein Complexes/metabolism , Molecular Sequence Data , Pisum sativum/chemistry , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Protein Denaturation , Protein Refolding , Spectrometry, Fluorescence , Tyrosine/chemistry
20.
Phys Chem Chem Phys ; 16(38): 20856-65, 2014 Oct 14.
Article En | MEDLINE | ID: mdl-25168759

A modified dye-sensitized solar cell consisting of a thin TiO2 barrier layer sensitized with natural trimeric light-harvesting complex II (LHCII) from spinach was used as a biomimetic model to study the effects of LHCII aggregation on the photovoltaic properties. The aggregation of individual trimers induced molecular reorganization, which dramatically increased the photocurrent. The morphology of small- and large-size LHCII aggregates deposited on a surface was confirmed by atomic force microscopy. Enhanced LHCII immobilization was accomplished via electrostatic interaction with amine-functionalized photoanodes. The photocurrent responses of the assembled solar cells under illumination at three characteristic wavelength bands in the UV-Vis absorption spectra of LHCII solutions confirmed that a significant photocurrent was generated by LHCII photosensitizers. The enhanced photocurrent by large aggregated LHCII is shown to correlate with the quenching in the far-red fluorescence deriving from chlorophyll-chlorophyll charge transfer states that are effectively coupled with the TiO2 surface and thus inject electrons into the TiO2 conduction band. The large aggregated LHCII with more chlorophyll-chlorophyll charge transfer states is a much better sensitizer since it injects electrons more efficiently into the conduction band of TiO2 than the small aggregated LHCII mostly consisting of unquenched chlorophyll excited state. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days.


Bioelectric Energy Sources , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/radiation effects , Solar Energy , Titanium/chemistry , Energy Transfer/radiation effects , Equipment Design , Equipment Failure Analysis , Light
...