Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38649186

RESUMEN

Numerous long non-coding RNAs (lncRNAs) were shown to have a functional impact on cellular processes such as human epidermal homeostasis. However, the mechanism of action for many lncRNAs remains unclear to date. Here, we report that lncRNA LINC00941 regulates keratinocyte differentiation on an epigenetic level through association with the NuRD complex, one of the major chromatin remodelers in cells. We find that LINC00941 interacts with NuRD-associated MTA2 and CHD4 in human primary keratinocytes. LINC00941 perturbation changes MTA2/NuRD occupancy at bivalent chromatin domains in close proximity to transcriptional regulator genes, including the EGR3 gene coding for a transcription factor regulating epidermal differentiation. Notably, LINC00941 depletion resulted in reduced NuRD occupancy at the EGR3 gene locus, increased EGR3 expression in human primary keratinocytes, and increased abundance of EGR3-regulated epidermal differentiation genes in cells and human organotypic epidermal tissues. Our results therefore indicate a role of LINC00941/NuRD in repressing EGR3 expression in non-differentiated keratinocytes, consequentially preventing premature differentiation of human epidermal tissues.


Asunto(s)
Diferenciación Celular , Epidermis , Histona Desacetilasas , Queratinocitos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , ARN Largo no Codificante , Proteínas Represoras , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Diferenciación Celular/genética , Queratinocitos/metabolismo , Queratinocitos/citología , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Epidermis/metabolismo , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Proteína 3 de la Respuesta de Crecimiento Precoz/genética , Proteína 3 de la Respuesta de Crecimiento Precoz/metabolismo , Epigénesis Genética , Células Epidérmicas/metabolismo , Células Epidérmicas/citología , Cromatina/metabolismo , Cromatina/genética , Regulación de la Expresión Génica , Células Cultivadas
2.
EMBO Rep ; 20(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30622217

RESUMEN

Several long non-coding RNAs (lncRNAs) act as regulators of cellular homeostasis; however, few of these molecules were functionally characterized in a mature human tissue environment. Here, we report that the lncRNA LINC00941 is a crucial regulator of human epidermal homeostasis. LINC00941 is enriched in progenitor keratinocytes and acts as a repressor of keratinocyte differentiation. Furthermore, LINC00941 represses SPRR5, a previously uncharacterized molecule, which functions as an essential positive regulator of keratinocyte differentiation. Interestingly, 54.8% of genes repressed in SPRR5-deficient epidermal tissue are induced in LINC00941-depleted organotypic epidermis, suggesting a common mode of action for both molecules.


Asunto(s)
Proteínas Ricas en Prolina del Estrato Córneo/genética , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Homeostasis , ARN Largo no Codificante/genética , Diferenciación Celular/genética , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Técnicas de Inactivación de Genes , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Transcripción Genética
3.
Adv Exp Med Biol ; 937: 3-17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27573892

RESUMEN

One of the long-standing principles of molecular biology is that DNA acts as a template for transcription of messenger RNAs, which serve as blueprints for protein translation. A rapidly growing number of exceptions to this rule have been reported over the past decades: they include long known classes of RNAs involved in translation such as transfer RNAs and ribosomal RNAs, small nuclear RNAs involved in splicing events, and small nucleolar RNAs mainly involved in the modification of other small RNAs, such as ribosomal RNAs and transfer RNAs. More recently, several classes of short regulatory non-coding RNAs, including piwi-associated RNAs, endogenous short-interfering RNAs and microRNAs have been discovered in mammals, which act as key regulators of gene expression in many different cellular pathways and systems. Additionally, the human genome encodes several thousand long non-protein coding RNAs >200 nucleotides in length, some of which play crucial roles in a variety of biological processes such as epigenetic control of chromatin, promoter-specific gene regulation, mRNA stability, X-chromosome inactivation and imprinting. In this chapter, we will introduce several classes of short and long non-coding RNAs, describe their diverse roles in mammalian gene regulation and give examples for known modes of action.


Asunto(s)
ARN no Traducido , Animales , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Citoplasma/metabolismo , Epigénesis Genética , Predicción , Regulación de la Expresión Génica , Mamíferos/genética , ARN/genética , ARN/metabolismo , Estabilidad del ARN , ARN Neoplásico/genética , ARN no Traducido/clasificación , ARN no Traducido/genética , ARN no Traducido/fisiología
4.
Oncotarget ; 7(1): 622-37, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26506418

RESUMEN

We determined expression of 83 long non-coding RNAs (lncRNAs) and identified ZFAS1 to be significantly up-regulated in colorectal cancer (CRC) tissue. In cohort of 119 CRC patients we observed that 111 cases displayed at least two-times higher expression of ZFAS1 in CRC compared to paired normal colorectal tissue (P < 0.0001). By use of CRC cell lines (HCT116+/+, HCT116-/- and DLD-1) we showed, that ZFAS1 silencing decreases proliferation through G1-arrest of cell cycle, and also tumorigenicity of CRC cells. We identified Cyclin-dependent kinase 1 (CDK1) as interacting partner of ZFAS1 by pull-down experiment and RNA immunoprecipitation. Further, we have predicted by bioinformatics approach ZFAS1 to sponge miR-590-3p, which was proved to target CDK1. Levels of CDK1 were not affected by ZFAS1 silencing, but cyclin B1 was decreased in both cell lines. We observed significant increase in p53 levels and PARP cleavage in CRC cell lines after ZFAS1 silencing indicating increase in apoptosis. Our data suggest that ZFAS1 may function as oncogene in CRC by two main actions: (i) via destabilization of p53 and through (ii) interaction with CDK1/cyclin B1 complex leading to cell cycle progression and inhibition of apoptosis. However, molecular mechanisms behind these interactions have to be further clarified.


Asunto(s)
Apoptosis/genética , Proteína Quinasa CDC2/genética , Puntos de Control de la Fase G1 del Ciclo Celular/genética , ARN Largo no Codificante/genética , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano , Anciano de 80 o más Años , Western Blotting , Proteína Quinasa CDC2/metabolismo , Células CACO-2 , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Ciclina B1/genética , Ciclina B1/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HT29 , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Interferencia de ARN , ARN Largo no Codificante/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína p53 Supresora de Tumor/metabolismo
5.
Nat Methods ; 11(9): 919-22, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25042787

RESUMEN

The heart's continuous motion makes it difficult to capture high-resolution images of this organ in vivo. We developed tools based on high-speed selective plane illumination microscopy (SPIM), offering pristine views into the beating zebrafish heart. We captured three-dimensional cardiac dynamics with postacquisition synchronization of multiview movie stacks, obtained static high-resolution reconstructions by briefly stopping the heart with optogenetics and resolved nonperiodic phenomena by high-speed volume scanning with a liquid lens.


Asunto(s)
Rastreo Celular/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Microscopía por Video/métodos , Miocitos Cardíacos/citología , Pez Cebra/anatomía & histología , Algoritmos , Animales , Miocitos Cardíacos/fisiología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Técnica de Sustracción , Pez Cebra/fisiología
6.
Bioessays ; 35(12): 1093-100, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24115003

RESUMEN

Long non-coding RNAs (lncRNAs) have recently gained increasing attention because of their crucial roles in gene regulatory processes. Functional studies using mammalian skin as a model system have revealed their role in controlling normal tissue homeostasis as well as the transition to a diseased state. Here, we describe how lncRNAs regulate differentiation to preserve an undifferentiated epidermal progenitor compartment, and to maintain a functional skin permeability barrier. Furthermore, we will reflect on recent work analyzing the impact of lncRNAs on the progression from normal epithelium to the development of skin disorders and cancer.


Asunto(s)
Epidermis/metabolismo , ARN Largo no Codificante/genética , Animales , Diferenciación Celular , Epidermis/patología , Perfilación de la Expresión Génica , Humanos , Piel/metabolismo , Piel/patología
7.
Front Pharmacol ; 4: 83, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825458

RESUMEN

The potential gap junction forming mouse connexin29 (Cx29) protein is concomitantly expressed with connexin32 (Cx32) in peripheral myelin forming Schwann cells and together with both Cx32 and connexin47 (Cx47) in oligodendrocytes of the CNS. To study the genomic structure and functional expression of Cx29, either primary cells or cell culture systems might be selected, from which the latter are easier to cultivate. Both structure and expression of Cx29 is still not fully understood. In the mouse sciatic nerve, brain and the oligodendroglial precursor cell line Oli-neu the Cx29 gene is processed in two transcript isoforms both harboring a unique reading frame. In contrast to Cx32 and Cx47, only Cx29 protein is abundantly expressed in undifferentiated as well as differentiated Oli-neu cells but the absence of Etbr dye transfer after microinjection concealed the function of Cx29-mediated gap junction communication between those cells. Although HeLa cells stably transfected with Cx29 or Cx29-eGFP neither demonstrated any permeability for Lucifer yellow nor for neurobiotin, blocking of Etbr uptake from the media by gap junction blockers does suppose a role of Cx29 in hemi-channel function. Thus, we conclude that, due to its high abundance of Cx29 expression and its reproducible culture conditions, the oligodendroglial precursor cell line Oli-neu might constitute an appropriate cell culture system to study molecular mechanisms or putative extracellular stimuli to functionally open Cx29 channels or hemi-channels.

8.
Eur J Neurosci ; 23(12): 3176-86, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16820008

RESUMEN

Horizontal cells are coupled by gap junctions; the extensive coupling of the horizontal cells is reflected in their large receptive fields, which extend far beyond the dendritic arbor of the individual cell. In the mouse retina, horizontal cells express connexin57 (Cx57). Tracer coupling of horizontal cells is impaired in Cx57-deficient mice, which suggests that the receptive fields of Cx57-deficient horizontal cells might be similarly reduced. To test this hypothesis we measured the receptive fields of horizontal cells from wildtype and Cx57-deficient mice. First, we examined the synaptic connections between horizontal cells and photoreceptors: no major morphological alterations were found. Moreover, horizontal cell spacing and dendritic field size were unaffected by Cx57 deletion. We used intracellular recordings to characterize horizontal cell receptive fields. Length constants were computed for each cell using the cell's responses to concentric light spots of increasing diameter. The length constant was dependent on the intensity of the stimulus: increasing stimulus intensity reduced the length constant. Deletion of Cx57 significantly reduced horizontal cell receptive field size. Dark resting potentials were strongly depolarized and response amplitudes reduced in Cx57-deficient horizontal cells compared to the wildtype, suggesting an altered input resistance. This was confirmed by patch-clamp recordings from dissociated horizontal cells; mean input resistance of Cx57-deficient horizontal cells was 27% lower than that of wildtype cells. These data thus provide the first quantification of mouse horizontal cell receptive field size and confirm the unique role of Cx57 in horizontal cell coupling and physiology.


Asunto(s)
Conexinas/metabolismo , Células Horizontales de la Retina/metabolismo , Campos Visuales/fisiología , Animales , Forma de la Célula , Conexinas/genética , Dopamina/metabolismo , Electrofisiología , Luz , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Células Horizontales de la Retina/citología
9.
Eur J Neurosci ; 19(10): 2633-40, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15147297

RESUMEN

Horizontal cells are interneurons of the vertebrate retina that exhibit strong electrical and tracer coupling but the identity of the channel-forming connexins has remained elusive. Here we show that horizontal cells of the mouse retina express connexin57 (Cx57). We have generated Cx57-deficient mice by replacing the Cx57 coding region with a lacZ reporter gene, expressed under control of the endogenous Cx57 promoter. These mice were fertile and showed no obvious anatomical or behavioural abnormalities. Cx57 mRNA was expressed in the retina of wild-type littermates but was absent from the retina of Cx57-deficient mice. Previously reported results that the Cx57 gene was very weakly expressed in several other mouse tissues turned out to be unspecific. Cx57 mRNA is abundantly expressed in the retina and weakly in the thymus of adult mice but absent in all other adult tissues tested, including brain. Furthermore, Cx57 is expressed in embryonic kidney at E16.5 to E18.5 days post-conception, as indicated by the pattern of lacZ expression. Within the retina, lacZ signals were assigned exclusively to horizontal cells based on co-localization with cell-type-specific marker proteins. Microinjection of Neurobiotin into horizontal cells of isolated retinae revealed less than 1% of tracer coupling in Cx57-deficient retinae compared with wild-type controls. Cx57 is the first connexin identified in mammalian horizontal cells and the first connexin whose expression is apparently restricted to only one type of neuron.


Asunto(s)
Biotina/análogos & derivados , Conexinas/metabolismo , Expresión Génica , Interneuronas/metabolismo , Retina/citología , Animales , Animales Recién Nacidos , Biotina/metabolismo , Northern Blotting/métodos , Células Cultivadas , Conexinas/genética , Embrión de Mamíferos , Vectores Genéticos/metabolismo , Inmunohistoquímica/métodos , Indoles/metabolismo , Operón Lac , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Proteína Quinasa C/metabolismo , Proteína Quinasa C-alfa , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Células Madre/metabolismo , beta-Galactosidasa/metabolismo
10.
J Cell Sci ; 116(Pt 16): 3443-52, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12840073

RESUMEN

To analyze the effect of connexin loss on the repair of wounded tail skin, we have studied the following transgenic mouse mutants: connexin30-/-, connexin31-/- and connexin43Cre-ER(T)/fl (for inducible deletion of the connexin43 coding region). Connexin43 and connexin31 are expressed in the basal and spinous layers of wild-type epidermis, whereas connexin31 and small amounts of connexin30, as well as connexin26 proteins, were found in the granulous layer. Connexin43 was downregulated in connexin31-deficient mice, whereas mice with reduced connexin43 exhibited an upregulation of connexin30. During wound healing, connexin30 and connexin26 proteins were upregulated in all epidermal layers, whereas connexin43 and connexin31 protein expression were downregulated. In connexin31-/- mice, reduced levels of connexin30 protein were observed on days 1 and 2 after wounding. The closure of epidermal wounds in mice with decreased amounts of connexin43 protein occurred one day earlier. Under these conditions the expression profiles of connexin30 and connexin31 were also temporarily shifted by one day. Furthermore, dye transfer between keratinocytes in skin sections from connexin43-deficient mice was decreased by 40%. These results suggest that downregulation of connexin43 appears to be a prerequisite for the coordinated proliferation and mobilization of keratinocytes during wound healing.


Asunto(s)
Conexinas/metabolismo , Epidermis/metabolismo , Queratinocitos/metabolismo , Cicatrización de Heridas/fisiología , Animales , Inmunohistoquímica , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA