Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Intervalo de año de publicación
1.
Zebrafish ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748396

RESUMEN

Various methods have been used in rodents to evaluate learning and memory. Although much less frequently used, the zebrafish emerges as an alternative model organism in this context. For example, it allows assessing potential behavioral deficits because of neurodevelopmental disorders or environmental neurotoxins. A variety of learning tasks have been employed in previous studies that required extensive habituation and training sessions. Here, we introduce a simpler and faster method to evaluate learning and memory of zebrafish with minimum habituation. A new apparatus, a transparent L-shaped tube, was developed in which we trained each zebrafish to swim through a long arm and measured the time to swim through this arm. We demonstrate that in this task, zebrafish could acquire both short-term (1 h) and long-term memory (4 days). We also studied learning and memory of a gene knockout (KO) zebrafish that showed social impairments related to autism. We found KO mutant zebrafish to show a quantitative impairment in habituation, learning, and memory performance compared with wild-type control fish. In conclusion, we established a novel learning apparatus and sensitive paradigm that allowed us to evaluate learning and memory of adult zebrafish that required only a brief habituation period and minimal training.

2.
Nutrients ; 15(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37375588

RESUMEN

Diabetes is a prevalent and debilitating metabolic disorder affecting a large population worldwide. The condition is characterized by insulin resistance and impaired function of pancreatic ß-cells, leading to elevated blood glucose levels. In this study, the antidiabetic effects of Erigeron annuus extract (EAE) on zebrafish with damaged pancreatic islets caused by insulin resistance were investigated. The study utilized the zebrafish model to monitor live pancreatic islets. RNA sequencing was also conducted to determine the mechanism by which EAE exerts its antidiabetic effect. The results showed that EAE was effective in recovering reduced islets in excess insulin-induced zebrafish. The effective concentration at 50% (EC50) of EAE was determined to be 0.54 µg/mL, while the lethal concentration at 50% (LC50) was calculated as 202.5 µg/mL. RNA sequencing indicated that the mode of action of EAE is related to its ability to induce mitochondrial damage and suppress endoplasmic reticulum stress. The findings of this study demonstrate the efficacy and therapeutic potential of EAE in treating insulin resistance in zebrafish. The results suggest that EAE may offer a promising approach for the management of diabetes by reducing mitochondrial damage and suppressing endoplasmic reticulum stress. Further research is required to establish the clinical application of EAE in diabetic patients.


Asunto(s)
Erigeron , Resistencia a la Insulina , Células Secretoras de Insulina , Animales , Pez Cebra , Erigeron/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Estrés del Retículo Endoplásmico , Hipoglucemiantes/farmacología
3.
Nutrients ; 15(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37049613

RESUMEN

Sensorineural hearing loss (SNHL) is a common condition that results from the loss of function of hair cells, which are responsible for converting sound into electrical signals within the cochlea and auditory nerve. Despite the prevalence of SNHL, a universally effective treatment has yet to be approved. To address this absence, the present study aimed to investigate the potential therapeutic effects of TS, a combination of Cuscutae Semen and Rehmanniae Radix Preparata. To this end, both in vitro and in vivo experiments were performed to evaluate the efficacy of TS with respect to SNHL. The results showed that TS was able to protect against ototoxic neomycin-induced damage in both HEI-OC1 cells and otic hair cells in zebrafish. Furthermore, in images obtained using scanning electron microscopy (SEM), an increase in the number of kinocilia, which was prompted by the TS treatment, was observed in the zebrafish larvae. In a noise-induced hearing loss (NIHL) mouse model, TS improved hearing thresholds as determined by the auditory brainstem response (ABR) test. Additionally, TS was found to regulate several genes related to hearing loss, including Trpv1, Cacna1h, and Ngf, as determined by quantitative real-time polymerase chain reaction (RT-PCR) analysis. In conclusion, the findings of this study suggest that TS holds promise as a potential treatment for sensorineural hearing loss. Further research is necessary to confirm these results and evaluate the safety and efficacy of TS in a clinical setting.


Asunto(s)
Canales de Calcio Tipo T , Pérdida Auditiva Sensorineural , Animales , Ratones , Pez Cebra , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Pérdida Auditiva Sensorineural/genética , Expresión Génica , Canales Catiónicos TRPV , Canales de Calcio Tipo T/uso terapéutico , Proteínas de Pez Cebra/genética
4.
Nutrients ; 14(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36014755

RESUMEN

Metabolic syndrome has become a global health care problem since it is rapidly increasing worldwide. The search for alternative natural supplements may have potential benefits for obesity and diabetes patients. Diospyros kaki fruit extract and its oligosaccharides, including gentiobiose, melibiose, and raffinose, were examined for their anti-insulin resistance and obesity-preventing effect in zebrafish larvae. The results show that D. kaki oligosaccharides improved insulin resistance and high-fat-diet-induced obesity in zebrafish larvae, evidenced by enhanced ß-cell recovery, decreased abdominal size, and reduced the lipid accumulation. The mechanism of the oligosaccharides, molecular docking, and enzyme activities of PTP1B were investigated. Three of the oligosaccharides had a binding interaction with the catalytic active sites of PTP1B, but did not show inhibitory effects in an enzyme assay. The catalytic residues of PTP1B were typically conserved and the cellular penetration of the cell membrane was necessary for the inhibitors. The results of the mechanism of action study indicate that D. kaki fruit extract and its oligosaccharides affected gene expression changes in inflammation- (TNF-α, IL-6, and IL-1ß), lipogenesis- (SREBF1 and FASN), and lipid-lowering (CPT1A)-related genes. Therefore, D. kaki fruit extract and its oligosaccharides may have a great potential for applications in metabolic syndrome drug development and dietary supplements.


Asunto(s)
Diospyros , Síndrome Metabólico , Animales , Diospyros/química , Frutas/química , Lípidos/análisis , Síndrome Metabólico/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Obesidad , Oligosacáridos/análisis , Oligosacáridos/farmacología , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Pez Cebra
5.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34358068

RESUMEN

Insulin resistance, which occurs when insulin levels are sufficiently high over a prolonged period, causing the cells to fail to respond normally to the hormone. As a system for insulin resistance and diabetes drug development, insulin-resistant rodent models have been clearly established, but there is a limitation to high-throughput drug screening. Recently, zebrafish have been identified as an excellent system for drug discovery and identification of therapeutic targets, but studies on insulin resistance models have not been extensively performed. Therefore, we aimed to make a rapid insulin-resistant zebrafish model that complements the existing rodent models. To establish this model, zebrafish were treated with 10 µM insulin for 48 h. This model showed characteristics of insulin-resistant disease such as damaged pancreatic islets. Then we confirmed the recovery of the pancreatic islets after pioglitazone treatment. In addition, it was found that insulin-resistant drugs have as significant an effect in zebrafish as in humans, and these results proved the value of the zebrafish insulin resistance model for drug selection. In addition, RNA sequencing was performed to elucidate the mechanism involved. KEGG pathway enrichment analysis of differentially expressed genes showed that insulin resistance altered gene expression due to the MAPK signaling and calcium signaling pathways. This model demonstrates the utility of the zebrafish model for drug testing and drug discovery in insulin resistance and diabetes.

6.
J Nat Med ; 75(3): 520-531, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33620670

RESUMEN

Senna siamea has been used as an antidiabetic drug since antiquity. With regard to traditional Thai medicine, the use of S. siamea was described for diabetes therapy. To understand the molecular mechanism regarding insulin resistance. Pure compounds were isolated from wood extract. We studied their biological activities on insulin-resistance using an in vivo zebrafish model. We also performed an in silico study; molecular docking, and in vitro study by taking advantage of the enzyme inhibitory activities of α-glucosidase, PTP1B, and DPP-IV. Based on the preliminary investigation that ethyl acetate and ethanol extracts have potent effects against insulin resistance on zebrafish larvae, five compounds were isolated from two fractions following: resveratrol, piceatannol, dihydropiceatannol, chrysophanol, and emodin. All of the isolated compounds had anti-insulin resistance effects on zebrafish larvae. Resveratrol, piceatannol, and dihydropiceatannol also demonstrated inhibitory effects against α-glucosidase. Chrysophanol and emodin inhibited PTP1B activity, while resveratrol showed a DPP-IV inhibition effect via the molecular docking. The results of enzyme assay were similar. In conclusions, S. siamea components demonstrated effects against insulin resistance. The chemical structure displayed identical biological activity to that of the compounds. Therefore, S. siamea wood extract and their components are potential therapeutic options in the treatment of diabetes.


Asunto(s)
Hipoglucemiantes/farmacología , Resistencia a la Insulina , Extractos Vegetales/farmacología , Senna/química , Animales , Antraquinonas/farmacología , Diabetes Mellitus , Dipeptidil Peptidasa 4/metabolismo , Emodina/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Resveratrol/farmacología , Estilbenos/farmacología , Relación Estructura-Actividad , Tailandia , Madera/química , Pez Cebra/metabolismo , alfa-Glucosidasas/metabolismo
7.
Plants (Basel) ; 10(1)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477487

RESUMEN

Avocado oil is beneficial to human health and has been reported to have beneficial effects on sensorineural hearing loss (SNHL). However, the compounds in avocado oil that affect SNHL have not been identified. In this study, we identified 20 compounds from avocado oil, including two new and 18 known fatty acid derivatives, using extensive spectroscopic analysis. The efficacy of the isolated compounds for improving SNHL was investigated in an ototoxic zebrafish model. The two new compounds, namely (2R,4R,6Z)-1,2,4-trihydroxynonadec-6-ene and (2R,4R)-1,2,4-trihydroxyheptadecadi-14,16-ene (compounds 1 and 2), as well as compounds 7, 9, 14, 17 and 19 showed significant improvement in damaged hair cells in toxic zebrafish. These results led to the conclusion that compounds from avocado oil as well as oil itself have a regenerative effect on damaged otic hair cells in ototoxic zebrafish.

8.
J Ginseng Res ; 45(1): 183-190, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437170

RESUMEN

BACKGROUND: The circadian rhythm is the internal clock that controls sleep-wake cycles, metabolism, cognition, and several processes in the body, and its disruption has been associated with aging. The differentiated embryo chondrocyte (Dec) gene is related to circadian rhythm. To our knowledge, there are no reports of the relationship between dec gene expression and KRG effect. Therefore, we treated Dec gene knockout (KO) aging mice with KRG to study anti-aging related effects and possible mechanisms. METHODS: We evaluated KRG and expression of Dec genes in an ototoxicity model. Dec genes expression in livers of aging mice was further analyzed. Then, we assessed the effects of DEC KO on hearing function in mice by ABR. Finally, we performed DNA microarray to identify KRG-related gene expression changes in mouse liver and assessed the results using KEGG analysis. RESULTS: KRG decreased the expression of Dec genes in ototoxicity model, which may contribute to its anti-aging efficacy. Moreover, KRG suppressed Dec genes expression in liver of wild type indicating inhibition of senescence. ABR test indicated that KRG improved auditory function in aging mouse, demonstrating KRG efficacy on aging related diseases. CONCLUSION: Finally, in KEGG analysis of 238 genes that were activated and 158 that were inhibited by KRG in DEC KO mice, activated genes were involved in proliferation signaling, mineral absorption, and PPAR signaling whereas the inhibited genes were involved in arachidonic acid metabolism and peroxisomes. Our data indicate that inhibition of senescence-related Dec genes may explain the anti-aging efficacy of KRG.

9.
ACS Omega ; 5(41): 26374-26381, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33110965

RESUMEN

Immunostimulatory activity comprises specific and nonspecific immune responses stimulated by internal and external factors. Arabinoxylan is well known for its immunostimulatory activity in vivo and in vitro, although the biological activities of arabinoxylan oligosaccharides depend on their structural features. In this study, we aimed to evaluate in vitro and in vivo the immunostimulatory activity of high-content active arabinoxylan (HCAA) obtained from rice bran through bioconversion by microorganisms and acid hydrolysis. Three microorganisms, Penicillium rocheforti, Aspergillus oryzae, and Pleurotus osteatus, and three different acid concentrations of hydrochloric acid (5, 10, and 20%) and acetic acid (25, 50, and 75%) were used for producing HCAA. HPLC analysis of arabinose and xylose content revealed that fermentation with P. rocheforti followed by hydrolysis with 5% hydrochloric acid was the most efficient to produce HCAA. GPC analysis of HCAA indicates that HCAA is a complex of various forms of saccharides and shows an average molecular weight of 625. Further, in vitro evaluation disclosed that exposure to HCAA (10-200 µg/mL) increased cell viability in mice splenic cells and RAW 264.7 cells. Additionally, exposure of mice to oral administration of HCAA (100 mg/kg) for 4-7 days increased lymphokine-activated killer (LAK)- and macrophage-mediated cytotoxic activity in cancer cells (YAC-1). Furthermore, in vitro exposure to HCAA and oral administrations in mice revealed increased interferon-γ (IFN-γ) and interleukin-10 (IL-10) protein expression through western blot analysis in RAW 264.7 cells and isolated splenic cells. Our results suggest that HCAA developed by bioconversion and acid hydrolysis may enhance immune responses in vivo and in vitro.

10.
J Med Food ; 23(5): 491-498, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32186941

RESUMEN

Changing consumption patterns and increasing health awareness, especially in Europe, are resulting in an increased demand for sesame seeds. In 2016, Asia imported the highest quantity of sesame seeds, followed by Europe and North America. We examined, for the first time, the effects of treatment with sesame oil and sesamin in hearing impairment models. Sesame oil exhibited an ameliorative effect on auditory impairment in a hair cell line in zebrafish and mice. In ototoxic zebrafish larvae, neuromasts and otic cells increased in numbers because of sesame oil. Furthermore, auditory function in noise-induced hearing loss (NIHL) was studied through auditory brainstem response to evaluate the therapeutic effects of sesame oil. Sesame oil reduced the hearing threshold shift in response to clicks and 8, 16-kHz tone bursts in NIHL mice. Auditory-protective effect of sesame oil was seen in zebrafish and mice; therefore, we used chromatographic analysis to study sesamin, which is the major effective factor in sesame oil. To investigate its effects related to auditory function, we studied the hearing-related gene, Tecta, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) assay. Auditory cell proliferation was induced by treatment with sesame oil and sesamin using Tecta (Tectorin Alpha) regulation. The expression of Tecta increases in the apex area of the cochlear hair cells as they grow, and their activity is enhanced by sesame oil and sesamin. These results provide a novel mechanistic insight into the sesame oil activities and suggest that sesamin, the key constituent in sesame oil, is responsible for its auditory function related benefits, including protection of auditory cells and reversal of their impairments.


Asunto(s)
Dioxoles/análisis , Dioxoles/uso terapéutico , Células Ciliadas Auditivas/efectos de los fármacos , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Lignanos/análisis , Lignanos/uso terapéutico , Aceite de Sésamo/uso terapéutico , Animales , Línea Celular , Expresión Génica , Larva , Ratones , Pez Cebra
11.
Nutrients ; 12(2)2020 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-31991895

RESUMEN

Ginger (Zingiber officinale Roscoe) and its active compounds (gingerols, shogaols and paradols) have been reported as having beneficial functions for several diseases, including diabetes. In this study, we revealed that the steaming process could enhance the anti-diabetic potential of ginger. To confirm the anti-diabetic effect of steamed ginger extract (GG03), we assessed pancreatic islets impaired by alloxan in zebrafish and demonstrated anti-hyperglycemic efficacy in a mouse model. The EC50 values of ginger extract (GE) and GG03 showed that the efficacy of GG03 was greater than that of GE. In addition, LC50 values demonstrated that GG03 had lower toxicity than GE, and the comparison of the Therapeutic Index (TI) proved that GG03 is a safer functional food. Furthermore, our data showed that GG03 significantly lowered hyperglycemia in a diabetic mouse model. HPLC was performed to confirm the change in the composition of steamed ginger. Interestingly, GG03 showed a 375% increase in 1-dehydro-6-gingerdione (GD) compared with GE. GD has not yet been studied much pharmacologically. Thus, we identified the protective effects of GD in the damaged pancreatic islets of diabetic zebrafish. We further assessed whether the anti-diabetic mechanism of action of GG03 and GD involves insulin secretion. Our results suggest that GG03 and GD might stimulate insulin secretion by the closure of KATP channels in pancreatic ß-cells.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Alcoholes Grasos/farmacología , Guayacol/análogos & derivados , Hipoglucemiantes/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Canales KATP/antagonistas & inhibidores , Extractos Vegetales/farmacología , Zingiber officinale , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Alcoholes Grasos/aislamiento & purificación , Alcoholes Grasos/toxicidad , Zingiber officinale/química , Zingiber officinale/toxicidad , Guayacol/aislamiento & purificación , Guayacol/farmacología , Guayacol/toxicidad , Hipoglucemiantes/aislamiento & purificación , Hipoglucemiantes/toxicidad , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Canales KATP/metabolismo , Masculino , Ratones Endogámicos ICR , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Raíces de Plantas , Bloqueadores de los Canales de Potasio/farmacología , Secretagogos/farmacología , Transducción de Señal , Vapor , Pez Cebra
12.
Rev. bras. farmacogn ; 29(6): 739-743, Nov.-Dec. 2019. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1057846

RESUMEN

ABSTRACT Persea americana Mill., Lauraceae, commonly known as the avocado, is native to tropical and subtropical regions, including Brazil. From the leaves of P. americana, one previously undescribed flavonol glycoside (1) together with ten known flavonoids (2-11), four megastigmane glycosides (12-15) and two lignans (16-17) were isolated. Their structures were determined by extensive spectroscopic methods including 1D- and 2D-nuclear magnetic resonance and mass spectrometry data. This is the first investigation that reports megastigmane glycoside and lignan classes within the genus Persea. All the isolated compounds have been assessed through the cell survival of larval zebrafish following neomycin-induced damage and the cell viability of a House Ear Institute-Organ of Corti 1 mouse auditory cell line. Among the tested compounds, juglanin (2) and (+)-lyoniresinol (16) showed significant cell regeneration in neomycin-damaged hair cell without cellular toxicity.

13.
J Ginseng Res ; 43(2): 272-281, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30976165

RESUMEN

BACKGROUND: Diabetic sensorineural damage is a complication of the sensory neural system, resulting from long-term hyperglycemia. Red ginseng (RG) has shown efficacy for treatment of various diseases, including diabetes mellitus; however, there is little research about its benefit for treating sensorineural damage. Therefore, we aim to evaluate RG efficacy in alloxan-induced diabetic neuromast (AIDN) zebrafish. METHODS: In this study, we developed and validated an AIDN zebrafish model. To assess RG effectiveness, we observed morphological changes in live neuromast zebrafish. Also, zebrafish has been observed to have an ultrastructure of hair-cell cilia under scanning electron microscopy. Thus, we recorded these physiological traits to assess hair cell function. Finally, we confirmed that RG promoted neuromast recovery via nerve growth factor signaling pathway markers. RESULTS: First, we established an AIDN zebrafish model. Using this model, we showed via live neuromast imaging that RG fostered recovery of sensorineural damage. Damaged hair cell cilia were recovered in AIDN zebrafish. Furthermore, RG rescued damaged hair cell function through cell membrane ion balance. CONCLUSION: Our data suggest that RG potentially facilitates recovery in AIDN zebrafish, and its mechanism seems to be promotion of the nerve growth factor pathway through increased expression of topomyosin receptor kinase A, transient receptor potential channel vanilloid subfamily type 1, and mitogen-activated protein kinase phosphorylation.

14.
Brain Res ; 1715: 235-244, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30958992

RESUMEN

Early-response auditory evoked potentials (AEPs) in humans are significantly altered in tinnitus. These changes are closely related to that seen in animals, leading to new approaches to study tinnitus based on objective parameters. The purpose of this study was to characterize the AEPs in animals with tinnitus, by assessing early to late latency responses. For behavioral evaluation, rats were trained using positive reinforcement to press a lever in the presence of an auditory stimulus and to not press during silence. The auditory brainstem response (ABR), middle latency response (MLR) and auditory late latency response (LLR) were correlated to the false-positive responses (pressing the lever during silence), after oral administrations of Sodium Salicylate (SS, 350 mg/kg). In the present study, SS significantly increased the hearing thresholds and reduced ABR peak I amplitudes across the frequency range (4-32 kHz). In contrast, increased amplitudes were observed for several peaks in ABR, MLR, and LLR. Moreover, reduced ABR latencies in response to 8, 16 and 24 kHz tone bursts were observed after SS administration. Similarly, the central evaluation also revealed significantly reduced latencies in MLR and LLR during SS administration. In contrast, increased latencies were observed for ABR latencies in response to 32 kHz tone bursts, and at the P1-N1 component of LLR. Correlational analysis revealed that latencies and amplitudes of peaks II and IV (8 and 16 kHz) of ABR, and N2 latency and P2-N2 amplitude of LLR were associated with behavioral tinnitus. We suggest that AEPs can be used in the rat to evaluate the reduced sensory input and the increased central gain in SS-induced tinnitus, as well as reduced latencies (8-16 kHz) to distinguish between hearing loss and tinnitus.


Asunto(s)
Potenciales Evocados Auditivos/fisiología , Audición/fisiología , Acúfeno/fisiopatología , Estimulación Acústica/métodos , Animales , Percepción Auditiva/fisiología , Umbral Auditivo/fisiología , Tronco Encefálico/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Femenino , Pérdida Auditiva , Ruido , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/fisiología , Salicilatos/farmacología
15.
Nutrients ; 11(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626089

RESUMEN

Sensorineural hearing loss (SNHL) is one of the most common causes of disability, affecting over 466 million people worldwide. However, prevention or therapy of SNHL has not been widely studied. Avocado oil has shown many health benefits but it has not yet been studied in regards to SNHL. Therefore, we aimed to investigate the efficacy of avocado oil on SNHL in vitro and in vivo and elucidate its mode of action. For the present study, we used enhanced functional avocado oil extract (DKB122). DKB122 led to recovery of otic hair cells in zebrafish after neomycin-induced otic cell damage. Also, DKB122 improved auditory sensory transmission function in a mouse model of noise induced-hearing loss and protected sensory hair cells in the cochlea. In addition, RNA sequencing was performed to elucidate the mechanism involved. KEGG pathway enrichment analysis of differentially expressed genes showed that DKB122 protected House Ear Institute-Organ of Corti 1 (HEI-OC1) cells against neomycin-related alterations in gene expression due to oxidative stress, cytokine production and protein synthesis.


Asunto(s)
Aminoácidos/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Pérdida Auditiva Sensorineural , Persea/química , Fitoterapia , Aceites de Plantas/farmacología , Animales , Percepción Auditiva/efectos de los fármacos , Cóclea/citología , Cóclea/efectos de los fármacos , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiología , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/genética , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/fisiopatología , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Aceites de Plantas/uso terapéutico , Análisis de Secuencia de ARN , Pez Cebra
16.
J Ethnopharmacol ; 231: 409-428, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30439402

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In Traditional Oriental Medicine (TOM), the development of hearing pathologies is related to an inadequate nourishment of the ears by the kidney and other organs involved in regulation of bodily fluids and nutrients. Several herbal species have historically been prescribed for promoting the production of bodily fluids or as antiaging agents to treat deficiencies in hearing. AIM OF REVIEW: The prevalence of hearing loss has been increasing in the last decade and is projected to grow considerably in the coming years. Recently, several herbal-derived products prescribed in TOM have demonstrated a therapeutic potential for acquired sensorineural hearing loss and tinnitus. Therefore, the aims of this review are to provide a comprehensive overview of the current known efficacy of the herbs used in TOM for preventing different forms of acquired sensorineural hearing loss and tinnitus, and associate the traditional principle with the demonstrated pharmacological mechanisms to establish a solid foundation for directing future research. METHODS: The present review collected the literature related to herbs used in TOM or related compounds on hearing from Chinese, Korean, and Japanese herbal classics; library catalogs; and scientific databases (PubMed, Scopus, Google Scholar; and Science Direct). RESULTS: This review shows that approximately 25 herbal species and 40 active compounds prescribed in TOM for hearing loss and tinnitus have shown in vitro or in vivo beneficial effects for acquired sensorineural hearing loss produced by noise, aging, ototoxic drugs or diabetes. The inner ear is highly vulnerable to ischemia and oxidative damage, where several TOM agents have revealed a direct effect on the auditory system by normalizing the blood supply to the cochlea and increasing the antioxidant defense in sensory hair cells. These strategies have shown a positive impact on maintaining the inner ear potential, sustaining the production of endolymph, reducing the accumulation of toxic and inflammatory substances, preventing sensory cell death and preserving sensory transmission. There are still several herbal species with demonstrated therapeutic efficacy whose mechanisms have not been deeply studied and others that have been traditionally used in hearing loss but have not been tested experimentally. In clinical studies, Ginkgo biloba, Panax ginseng, and Astragalus propinquus have demonstrated to improve hearing thresholds in patients with sensorineural hearing loss and alleviated the symptoms of tinnitus. However, some of these clinical studies have been limited by small sample sizes, lack of an adequate control group or contradictory results. CONCLUSIONS: Current therapeutic strategies have proven that the goal of the traditional oriental medicine principle of increasing bodily fluids is a relevant approach for reducing the development of hearing loss by improving microcirculation in the blood-labyrinth barrier and increasing cochlear blood flow. The potential benefits of TOM agents expand to a multi-target approach on different auditory structures of the inner ear related to increased cochlear blood flow, antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, more research is required, given the evidence is very limited in terms of the mechanism of action at the preclinical in vivo level and the scarce number of clinical studies published.


Asunto(s)
Pérdida Auditiva Sensorineural/tratamiento farmacológico , Medicina Tradicional de Asia Oriental , Animales , Descubrimiento de Drogas , Etnofarmacología , Pérdida Auditiva Sensorineural/epidemiología , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/fisiopatología , Humanos
17.
Arch Dermatol Res ; 310(3): 245-253, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29356892

RESUMEN

The excrement of silkworms (Bombyx mori L.), referred to here as silkworm droppings (SDs), is used as a traditional drug in eastern medicine to treat skin diseases such as urticaria and atopy. However, the depigmentation effects of SDs have not previously been evaluated. We focused on the depigmentation effect of a methanol extract of SDs and isolated components of the extract using a zebrafish model system. (+)-Dehydrovomifoliol (M-1), (6R,7E,9R)-9-hydroxy-4,7-megastigmadien-3-one (M-2), (3S,5R,8R)-3,5-dihydroxymegastigma-6,7-dien-9-one (M-3), roseoside (M-4), and citroside A (M-5) were isolated from only SDs extract (SDE), and chemical structures were identified through spectroscopic methods. Toxicity of SDE was evaluated by assessing its effect on the viability of human fibroblast cells and the hatching rate of zebrafish embryos. In addition, the depigmentation ability of SDE and isolated constituents was evaluated using a zebrafish model. Binary threshold, histograms, and the size of the black spots on the dorsal region of zebrafish larvae were analyzed using image analysis tools. Finally, SDE is a non-toxic material and has a dose-dependent depigmentation effect in zebrafish larvae. Moreover, various doses of compounds isolated from SDE, namely, M-1 to M-5, had a depigmentation effect. In particular, M-5 inhibited melanin synthesis in melanocytes stimulated by α-melanocyte stimulating hormone (α-MSH). Together, our results suggest that SDs can be used for depigmentation purposes in health and/or cosmetic applications.


Asunto(s)
Heces/química , Larva/efectos de los fármacos , Morus/química , Hojas de la Planta/química , Preparaciones para Aclaramiento de la Piel/farmacología , Animales , Bombyx/metabolismo , Células Cultivadas , Fibroblastos/efectos de los fármacos , Humanos , Larva/metabolismo , Melaninas/biosíntesis , Melanocitos/metabolismo , Preparaciones para Aclaramiento de la Piel/análisis , Pez Cebra
18.
Phytomedicine ; 36: 128-136, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29157806

RESUMEN

BACKGROUND: Protection of cochlear function and reconstruction of neuronal networks in damaged auditory sensory structures is crucial for therapeutic treatment of diabetic hearing loss. Nerve growth factor (NGF) has been used as a novel therapeutic target to protect against the neurodegenerative effects of Diabetes Mellitus (DM). PURPOSE: We aimed to evaluate the potential effect of trigonelline (TRG) on reducing auditory damage produced by DM using NGF as a potential marker. METHOD: Docking simulations were carried out using Autodock Vina software and visualized using Discovery Studio. Morphological analysis of hair cells and neuromasts was performed on alloxan-induced diabetic zebrafish by fluorescence and scanning electron microscopy. Blockage of NGF receptor phosphorylation with K-252a was used to evaluate TRG and NGF action. Further assessment of NGF by ELISA on a primary culture of spiral ganglion cells was performed as a marker of neuronal function on the hearing system. Finally, auditory function was assessed in LepR(db/db) mice using auditory brainstem response (ABR) and transient evoked otoacoustic emission (TEOAE) during 8 weeks. RESULTS: Docking simulations showed that TRG binds to the active site of NGF through molecular interactions with Lysine88 (Lys88) and Tyrosine52 (Tyr52). TRG treatment significantly reduced hair cell loss and neuromast damage in diabetic zebrafish (P < .05). Further evaluation revealed a significant increase in the number of neuromasts after NGF administration (P < .001). TRG and NGF action was suppressed during blockage of NGF receptor phosphorylation. Moreover, spiral ganglion cells revealed significant elevation on NGF values after TRG treatment (P < .05). In vivo evaluation of LepR(db/db) mice revealed a significant reduction in the auditory damage produced under diabetic progression, characterized by reduced ABR hearing threshold shifts and increased signal-to-noise ratio in TEOAE (P < .05). CONCLUSIONS: This study suggests that the enhanced hearing function produced by TRG may be mediated by NGF, providing a potential therapeutic strategy for diabetic hearing loss.


Asunto(s)
Alcaloides/farmacología , Umbral Auditivo/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Células Ciliadas Auditivas/efectos de los fármacos , Factor de Crecimiento Nervioso/metabolismo , Alcaloides/química , Animales , Carbazoles/farmacología , Dominio Catalítico , Simulación por Computador , Diabetes Mellitus Experimental/fisiopatología , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Alcaloides Indólicos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Factor de Crecimiento Nervioso/química , Emisiones Otoacústicas Espontáneas/efectos de los fármacos , Ratas Sprague-Dawley , Pez Cebra
19.
Biomed Pharmacother ; 93: 1303-1309, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28747011

RESUMEN

In noise-induced hearing loss (NIHL), noise exposure damages cochlear sensory hair cells, which lack the capacity to regenerate. Following noise insult, intense metabolic activity occurs, resulting in a cochlear free radical imbalance. Oxidative stress and antioxidant enzyme alterations, including lipoxygenase upregulation, have been linked to chronic inflammation, which contributes to hearing impairment. We previously proposed Scutellaria baicalensis (SB) extract as an alternative therapeutic for preventing NIHL and attributed its pharmacological effects to baicalein. Although baicalein was most effective, its concentration in SB extract is much lower compared to baicalin. In this study, we performed enzymatic bioconversion using an Sumizyme (SM) enzyme to increase baicalein concentration in SB extract and consequently improve its therapeutic efficacy. HPLC analysis revealed that baicalein concentration in SB extract after bioconversion (BSB) was significantly increased. Moreover, BSB-treated mice exhibited significantly improved auditory function compared with control mice and tended to have improved auditory function compared with SB-treated mice. We also demonstrated that BSB effectively stimulates hair cell regeneration compared to SB that did not achieve the same effect in a zebrafish model. Finally, when compared the abilities of SB and BSB to inhibit lipoxygenase (LOX), BSB showed a greater efficacy. Cumulatively, our data suggest that BSB exhibits improved pharmacological properties for treating NIHL compared with SB.


Asunto(s)
Células Ciliadas Auditivas/efectos de los fármacos , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Flavanonas/farmacología , Flavonoides/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo/efectos de los fármacos , Scutellaria baicalensis
20.
J Ginseng Res ; 41(1): 103-112, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28123328

RESUMEN

BACKGROUND: 20(S)-Protopanaxadiol 20-O-D-glucopyranoside, also called compound K (CK), exerts antidiabetic effects that are mediated by insulin secretion through adenosine triphosphate (ATP)-sensitive potassium (KATP) channels in pancreatic ß-cells. However, the antidiabetic effects of CK may be limited because of its low bioavailability. METHODS: In this study, we aimed to enhance the antidiabetic activity and lower the toxicity of CK by including it with ß-cyclodextrin (CD) (CD-CK), and to determine whether the CD-CK compound enhanced pancreatic islet recovery, compared to CK alone, in an alloxan-induced diabetic zebrafish model. Furthermore, we confirmed the toxicity of CD-CK relative to CK alone by morphological changes, mitochondrial damage, and TdT-UTP nick end labeling (TUNEL) assays, and determined the ratio between the toxic and therapeutic dose for both compounds to verify the relative safety of CK and CD-CK. RESULTS: The CD-CK conjugate (EC50 = 2.158µM) enhanced the recovery of pancreatic islets, compared to CK alone (EC50 = 7.221µM), as assessed in alloxan-induced diabetic zebrafish larvae. In addition, CD-CK (LC50 = 20.68µM) was less toxic than CK alone (LC50 = 14.24µM). The therapeutic index of CK and CD-CK was 1.98 and 9.58, respectively. CONCLUSION: The CD-CK inclusion complex enhanced the recovery of damaged pancreatic islets in diabetic zebrafish. The CD-CK inclusion complex has potential as an effective antidiabetic efficacy with lower toxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...