Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Sci Rep ; 13(1): 22694, 2023 12 20.
Article En | MEDLINE | ID: mdl-38123643

Contact urticaria (CU) is an inflammatory skin disorder triggered by specific substances upon skin contact, leading to immediate acute or chronic manifestations characterized by swelling and redness. While mesenchymal stem cells (MSCs) are increasingly recognized for their therapeutic potential in immune diseases, research on the efficacy and mechanisms of stem cell therapy for urticaria remains scarce. This study investigates the regulatory role of embryonic-stem-cell-derived multipotent MSCs (M-MSCs) administered in a CU mouse model. Therapeutic effects of M-MSC administration were assessed in a Trimellitic anhydride-induced contact urticaria model, revealing significant inhibition of urticarial reactions, including ear swelling, itchiness, and skin lesion. Moreover, M-MSC administration exerted control over effector T cell activities in major lymphoid and peripheral tissues, while also suppressing mast cell degranulation in peripheral tissues. Notably, the inhibitory effects mediated by M-MSCs were found to be TGF-ß-dependent. Our study demonstrates the capacity of M-MSCs to regulate contact urticaria in a murine model, harmonizing the activation of inflammatory T cells and mast cells. Additionally, we suggest that TGF-ß derived from M-MSCs could play a pivotal role as an inhibitory mechanism in contact urticaria.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Urticaria , Animals , Mice , T-Lymphocytes , Mast Cells , Urticaria/chemically induced , Urticaria/therapy , Transforming Growth Factor beta
2.
Stem Cells Transl Med ; 11(10): 1010-1020, 2022 Oct 21.
Article En | MEDLINE | ID: mdl-36069837

There are still no definite treatment modalities for interstitial cystitis (IC). Meanwhile, stem cell therapy is rising as potential alternative for various chronic diseases. This study aimed to investigate the safety of the clinical-grade mesenchymal stem cells (MSCs) derived from human embryonic stem cells (hESCs), code name MR-MC-01 (SNU42-MMSCs), in IC patients. Three female IC patients with (1) symptom duration >6 months, (2) visual pain analog scale (VAS) ≥4, and (3) one or two Hunner lesions <2 cm in-office cystoscopy within 1 month were included. Under general anesthesia, participants received cystoscopic submucosal injection of SNU42-MMSCs (2.0 × 107/5 mL) at the center or margin of Hunner lesions and other parts of the bladder wall except trigone with each injection volume of 1 mL. Follow-up was 1, 3, 6, 9, and 12 months postoperatively. Patients underwent scheduled follow-ups, and symptoms were evaluated with validated questionnaires at each visit. No SNU42-MMSCs-related adverse events including immune reaction and abnormalities on laboratory tests and image examinations were reported up to 12-month follow-up. VAS pain was temporarily improved in all subjects. No de novo Hunner lesions were observed and one lesion of the first subject was not identifiable on 12-month cystoscopy. This study reports the first clinical application of transurethral hESC-derived MSC injection in three patients with IC. hESC-based therapeutics was safe and proved to have potential therapeutic efficacy in IC patients. Stem cell therapy could be a potential therapeutic option for treating IC.


Cystitis, Interstitial , Human Embryonic Stem Cells , Mesenchymal Stem Cells , Humans , Female , Cystitis, Interstitial/therapy , Cystitis, Interstitial/diagnosis , Cystitis, Interstitial/pathology , Human Embryonic Stem Cells/pathology , Urinary Bladder , Pain , Mesenchymal Stem Cells/pathology
3.
Biomedicines ; 10(7)2022 Jun 29.
Article En | MEDLINE | ID: mdl-35884853

BACKGROUND: Rotator cuff tears (RCTs) induce chronic muscle weakness and shoulder pain. Treatment of RCT using surgery or drugs causes lipid infiltration and fibrosis, which hampers tissue regeneration and complete recovery. The pluripotent stem cell-derived multipotent mesenchymal stem cells (M-MSCs) represent potential candidate next-generation therapies for RCT. METHODS: The difference between M-MSCs and adult-MSCs was compared and analyzed using next-generation sequencing (NGS). In addition, using a rat model of RCT, the muscle recovery ability of M-MSCs and adult-MSCs was evaluated by conducting a histological analysis and monitoring the cytokine expression level. RESULTS: Using NGS, it was confirmed that M-MSC was suitable for transplantation because of its excellent ability to regulate inflammation that promotes tissue repair and reduced apoptosis and rejection during transplantation. In addition, while M-MSCs persisted for up to 8 weeks in vivo, they significantly reduced inflammation and adipogenesis-related cytokine levels in rat muscle. Significant differences were also confirmed in histopathological remission. CONCLUSIONS: M-MSCs remain in the body longer to modulate immune responses in RCTs and have a greater potential to improve muscle recovery by alleviating acute inflammatory responses. This indicates that M-MSCs could be used in potential next-generation RCT therapies.

4.
Biomedicines ; 10(2)2022 Feb 14.
Article En | MEDLINE | ID: mdl-35203655

Patients with vascular dementia, caused by cerebral ischemia, experience long-term cognitive impairment due to the lack of effective treatment. The mechanisms of and treatments for vascular dementia have been investigated in various animal models; however, the insufficient information on gene expression changes that define pathological conditions hampers progress. To investigate the underlying mechanism of and facilitate treatment development for vascular dementia, we established a mouse model of chronic cerebral hypoperfusion, including bilateral carotid artery stenosis, by using microcoils, and elucidated the molecular pathway underlying vascular dementia development. Rho-associated protein kinase (ROCK) 1/2, which regulates cellular structure, and inflammatory cytokines (IL-1 and IL-6) were upregulated in the vascular dementia model. However, expression of claudin-5, which maintains the blood-brain barrier, and MAP2 as a nerve cell-specific factor, was decreased in the hippocampal region of the vascular dementia model. Thus, we revealed that ROCK pathway activation loosens the tight junction of the blood-brain barrier and increases the influx of inflammatory cytokines into the hippocampal region, leading to neuronal death and causing cognitive and emotional dysfunction. Our vascular dementia model allows effective study of the vascular dementia mechanism. Moreover, the ROCK pathway may be a target for vascular dementia treatment development in the future.

5.
Biomaterials ; 280: 121277, 2022 01.
Article En | MEDLINE | ID: mdl-34861510

Mesenchymal stem cell (MSC) therapy is a promising treatment for various intractable disorders including interstitial cystitis/bladder pain syndrome (IC/BPS). However, an analysis of fundamental characteristics driving in vivo behaviors of transplanted cells has not been performed, causing debates about rational use and efficacy of MSC therapy. Here, we implemented two-photon intravital imaging and single cell transcriptome analysis to evaluate the in vivo behaviors of engrafted multipotent MSCs (M-MSCs) derived from human embryonic stem cells (hESCs) in an acute IC/BPS animal model. Two-photon imaging analysis was performed to visualize the dynamic association between engrafted M-MSCs and bladder vasculature within live animals until 28 days after transplantation, demonstrating the progressive integration of transplanted M-MSCs into a perivascular-like structure. Single cell transcriptome analysis was performed in highly purified engrafted cells after a dual MACS-FACS sorting procedure and revealed expression changes in various pathways relating to pericyte cell adhesion and cellular stress. Particularly, FOS and cyclin dependent kinase-1 (CDK1) played a key role in modulating the migration, engraftment, and anti-inflammatory functions of M-MSCs, which determined their in vivo therapeutic potency. Collectively, this approach provides an overview of engrafted M-MSC behavior in vivo, which will advance our understanding of MSC therapeutic applications, efficacy, and safety.


Cystitis, Interstitial , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Cystitis, Interstitial/therapy , Disease Models, Animal , Intravital Microscopy , Mesenchymal Stem Cell Transplantation/methods , Transcriptome
6.
Stem Cell Res Ther ; 12(1): 539, 2021 10 11.
Article En | MEDLINE | ID: mdl-34635172

Allergic diseases are immune-mediated diseases. Allergies share a common immunopathogenesis, with specific differences according to the specific disease. Mesenchymal stem/stromal cells (MSCs) have been applied to people suffering from allergic and many other diseases. In this review, the immunologic roles of MSCs are systemically reviewed according to disease immunopathogenesis from a clinical viewpoint. MSCs seem to be a promising therapeutic modality not only as symptomatic treatments but also as causative and even preventive treatments for allergic diseases, including atopic dermatitis and chronic urticaria.


Chronic Urticaria , Dermatitis, Atopic , Hypersensitivity , Mesenchymal Stem Cells , Dermatitis, Atopic/therapy , Humans
7.
Stem Cell Rev Rep ; 17(6): 2139-2152, 2021 12.
Article En | MEDLINE | ID: mdl-34189670

BACKGROUND: The therapeutic effects of human embryonic stem cell-derived multipotent mesenchymal stem cells (M-MSCs) were evaluated for detrusor underactivity (DUA) in a rat model with atherosclerosis-induced chronic bladder ischemia (CBI) and associated mechanisms. METHODS: Sixteen-week-old male Sprague-Dawley rats were divided into five groups (n = 10). The DUA groups underwent 30 bilateral repetitions of endothelial injury to the iliac arteries to induce CBI, while the sham control group underwent a sham operation. All rats used in this study received a 1.25% cholesterol diet for 8 weeks. M-MSCs at a density of 2.5, 5.0, or 10.0 × 105 cells (250 K, 500 K, or 1000 K; K = a thousand) were injected directly into the bladder 7 weeks post-injury, while the sham and DUA group were treated only with vehicle (phosphate buffer solution). One week after M-MSC injection, awake cystometry was performed on the rats. Then, the bladders were harvested, studied in an organ bath, and prepared for histological and gene expression analyses. RESULTS: CBI by iliac artery injury reproduced voiding defects characteristic of DUA with decreased micturition pressure, increased micturition interval, and a larger residual volume. The pathological DUA properties were improved by M-MSC treatment in a dose-dependent manner, with the 1000 K group producing the best efficacy. Histological analysis revealed that M-MSC therapy reduced CBI-induced injuries including bladder fibrosis, muscular loss, and apoptosis. Transplanted M-MSCs mainly engrafted as vimentin and NG2 positive pericytes rather than myocytes, leading to increased angiogenesis in the CBI bladder. Transcriptomes of the CBI-injured bladders were characterized by the complement system, inflammatory, and ion transport-related pathways, which were restored by M-MSC therapy. CONCLUSIONS: Single injection of M-MSCs directly into the bladder of a CBI-induced DUA rat model improved voiding profiles and repaired the bladder muscle atrophy in a dose-dependent manner.


Human Embryonic Stem Cells , Mesenchymal Stem Cells , Urinary Bladder, Underactive , Animals , Disease Models, Animal , Human Embryonic Stem Cells/pathology , Humans , Ischemia/pathology , Ischemia/therapy , Male , Rats , Rats, Sprague-Dawley , Urinary Bladder/pathology , Urinary Bladder, Underactive/pathology
8.
J Clin Med ; 9(9)2020 Sep 03.
Article En | MEDLINE | ID: mdl-32899334

Mesenchymal stem/stromal cell (MSC) therapy is a promising approach for treatment of as yet incurable detrusor underactivity (DUA), which is characterized by decreased detrusor contraction strength and/or duration, leading to prolonged bladder emptying. In the present study, we demonstrated the therapeutic potential of human embryonic stem cell (ESC)-derived multipotent MSCs (M-MSCs) in a diabetic rat model of DUA. Diabetes mellitus (DM) was induced by intraperitoneal injection of streptozotocin (STZ) (50 mg/kg) into 8-week-old female Sprague-Dawley rats. Three weeks later, various doses of M-MSCs (0.25, 0.5, and 1 × 106 cells) or an equivalent volume of PBS were injected into the outer layer of the bladder. Awake cystometry, organ bath, histological, and gene expression analyses were evaluated 1 week (short-term) or 2 and 4 weeks (long-term) after M-MSC transplantation. STZ-induced diabetic rats developed DUA, including phenotypes with significantly longer micturition intervals, increased residual urine amounts and bladder capacity, decreased micturition pressure on awake cystometry, and contractile responses to various stimuli in organ bath studies. Muscle degeneration, mast cell infiltration, fibrosis, and apoptosis were present in the bladders of DM animals. A single local transplantation of M-MSCs ameliorated DUA bladder pathology, including functional changes and histological evaluation, and caused few adverse outcomes. Immunostaining and gene expression analysis revealed that the transplanted M-MSCs supported myogenic restoration primarily by engrafting into bladder tissue via pericytes, and subsequently exerting paracrine effects to prevent apoptotic cell death in bladder tissue. The therapeutic efficacy of M-MSCs was superior to that of human umbilical cord-derived MSCs at the early time point (1 week). However, the difference in efficacy between M-MSCs and human umbilical cord-derived MSCs was statistically insignificant at the later time points (2 and 4 weeks). Collectively, the present study provides the first evidence for improved therapeutic efficacy of a human ESC derivative in a preclinical model of DM-associated DUA.

9.
Biomedicines ; 8(6)2020 Jun 26.
Article En | MEDLINE | ID: mdl-32604871

Various types of stress stimuli have been shown to threaten the normal development of embryos during embryogenesis. Prolonged heat exposure is the most common stressor that poses a threat to embryo development. Despite the extensive investigation of heat stress control mechanisms in the cytosol, the endoplasmic reticulum (ER) heat stress response remains unclear. In this study, we used human embryonic stem cells (hESCs) to examine the effect of heat stress on early embryonic development, specifically alterations in the ER stress response. In a hyperthermic (42 °C) culture, ER stress response genes involved in hESC differentiation were induced within 1 h of exposure, which resulted in disturbed and delayed differentiation. In addition, hyperthermia increased the expression levels of activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) genes, which are associated with the protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway. Furthermore, we demonstrated that tauroursodeoxycholic acid, a chemical chaperone, mitigated the delayed differentiation under hyperthermia. Our study identified novel gene markers in response to hyperthermia-induced ER stress on hESCs, thereby providing further insight into the mechanisms that regulate human embryogenesis.

10.
Sci Adv ; 6(16): eaba1334, 2020 04.
Article En | MEDLINE | ID: mdl-32490200

Glutathione (GSH), the most abundant nonprotein thiol functioning as an antioxidant, plays critical roles in maintaining the core functions of mesenchymal stem cells (MSCs), which are used as a cellular immunotherapy for graft-versus-host disease (GVHD). However, the role of GSH dynamics in MSCs remains elusive. Genome-wide gene expression profiling and high-throughput live-cell imaging assays revealed that CREB1 enforced the GSH-recovering capacity (GRC) of MSCs through NRF2 by directly up-regulating NRF2 target genes responsible for GSH synthesis and redox cycling. MSCs with enhanced GSH levels and GRC mediated by CREB1-NRF2 have improved self-renewal, migratory, anti-inflammatory, and T cell suppression capacities. Administration of MSCs overexpressing CREB1-NRF2 target genes alleviated GVHD in a humanized mouse model, resulting in improved survival, decreased weight loss, and reduced histopathologic damages in GVHD target organs. Collectively, these findings demonstrate the molecular and functional importance of the CREB1-NRF2 pathway in maintaining MSC GSH dynamics, determining therapeutic outcomes for GVHD treatment.


Graft vs Host Disease , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Glutathione/metabolism , Graft vs Host Disease/etiology , Graft vs Host Disease/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
11.
Theranostics ; 8(20): 5610-5624, 2018.
Article En | MEDLINE | ID: mdl-30555567

Rationale: Mesenchymal stem cell (MSC) therapy may be a novel approach to improve interstitial cystitis/bladder pain syndrome (IC/BPS), an intractable disease characterized by severe pelvic pain and urinary frequency. Unfortunately, the properties of transplanted stem cells have not been directly analyzed in vivo, which hampers elucidation of the therapeutic mechanisms of these cells and optimization of transplantation protocols. Here, we monitored the behaviors of multipotent stem cells (M-MSCs) derived from human embryonic stem cells (hESCs) in real time using a novel combination of in vivo confocal endoscopic and microscopic imaging and demonstrated their improved therapeutic potency in a chronic IC/BPS animal model. Methods: Ten-week-old female Sprague-Dawley rats were instilled with 10 mg of protamine sulfate followed by 750 µg of lipopolysaccharide weekly for 5 weeks. The sham group was instilled with phosphate-buffered saline (PBS). Thereafter, the indicated dose (0.1, 0.25, 0.5, and 1×106 cells) of M-MSCs or PBS was injected once into the outer layer of the bladder. The distribution, perivascular integration, and therapeutic effects of M-MSCs were monitored by in vivo endoscopic and confocal microscopic imaging, awake cystometry, and histological and gene expression analyses. Results: A novel combination of longitudinal intravital confocal fluorescence imaging and microcystoscopy in living animals, together with immunofluorescence analysis of bladder tissues, demonstrated that transplanted M-MSCs engrafted following differentiation into multiple cell types and gradually integrated into a perivascular-like structure until 30 days after transplantation. The beneficial effects of transplanted M-MSCs on bladder voiding function and the pathological characteristics of the bladder were efficient and long-lasting due to the stable engraftment of these cells. Conclusion: This longitudinal bioimaging study of transplanted hESC-derived M-MSCs in living animals reveals their long-term functional integration, which underlies the improved therapeutic effects of these cells on IC/BPS.


Cystitis, Interstitial/diagnostic imaging , Cystitis, Interstitial/therapy , Intravital Microscopy/methods , Mesenchymal Stem Cells/cytology , Urinary Bladder/diagnostic imaging , Animals , Disease Models, Animal , Female , Mesenchymal Stem Cell Transplantation , Multipotent Stem Cells/cytology , Multipotent Stem Cells/transplantation , Rats , Rats, Sprague-Dawley
12.
Biomaterials ; 187: 18-26, 2018 12.
Article En | MEDLINE | ID: mdl-30290226

Precise targeting with minimal side effects is of particular interest for personalized medicine, although it remains a challenge. Herein, we demonstrate precision photodynamic therapy (PDT) utilizing human mesenchymal stem cells (MSCs) as cellular vehicles to deliver a new activatable photosensitizer (PcS). In vivo real-time optical imaging tests indicated that PcS-loaded MSCs possess excellent tumor-homing properties. More importantly, dye transfer assays confirm that MSCs precisely transfer PcS into human colon cancer cells (HCT116) via the "bystander effect." Upon localized light irradiation, the growth of intraperitoneal xenograft tumors was significantly inhibited by the photodynamic effect. These findings represent a promising strategy for precise oncotherapy.


Coordination Complexes/administration & dosage , Drug Carriers , Mesenchymal Stem Cells , Photosensitizing Agents/administration & dosage , Zinc/chemistry , Animals , Cell Movement , Female , Green Fluorescent Proteins/genetics , HCT116 Cells , Heterografts , Humans , Kinetics , Lentivirus/genetics , Light , Mesenchymal Stem Cells/physiology , Mice, Inbred BALB C , Photochemotherapy
13.
Int J Stem Cells ; 11(2): 149-156, 2018 Nov 30.
Article En | MEDLINE | ID: mdl-30173502

Human embryonic stem cells (hESCs) are pluripotent cells widely used in conventional and regenerative medicine due to their ability to self-renew, proliferate and differentiate. Recently, genetic modification of stem cells using genome editing is the most advanced technique for treating hereditary diseases. Nevertheless, the low transfection efficiency of hESCs using enzymatic methods is still limited in in vitro preclinical research. To overcome these limitations, we have developed transfection methods using non-enzymatic treatments on hESCs. In this study, hESCs were transfected following enzymatic (TrypLE and trypsin) and non-enzymatic treatment ethylenediaminetetraacetic acid (EDTA) to increase transfection efficiency. Flow cytometric analysis using an enhanced green fluorescent protein vector showed a significantly increased transfection efficiency of EDTA method compared to standard enzyme method. In addition, the EDTA approach maintained stable cell viability and recovery rate of hESCs after transfection. Also, metabolic activity by using Extracellular Flux Analyzer revealed that EDTA method maintained as similar levels of cell functionality as normal group comparing with enzymatic groups. These results suggest that transfection using EDTA is a more efficient and safe substitute for transfection than the use of standard enzymatic methods.

14.
Int Neurourol J ; 22(Suppl 1): S34-45, 2018 Jan.
Article En | MEDLINE | ID: mdl-29385783

PURPOSE: To evaluate the therapeutic effect of human embryonic stem cell (hESC)-derived multipotent mesenchymal stem cells (M-MSCs) on ketamine-induced cystitis (KC) in rats. METHODS: To induce KC, 10-week-old female rats were injected with 25-mg/kg ketamine hydrochloride twice weekly for 12 weeks. In the sham group, phosphate buffered saline (PBS) was injected instead of ketamine. One week after the final injection of ketamine, the indicated doses (0.25, 0.5, and 1×106 cells) of M-MSCs (KC+M-MSC group) or PBS vehicle (KC group) were directly injected into the bladder wall. One week after M-MSC injection, the therapeutic outcomes were evaluated via cystometry, histological analyses, and measurement of gene expression. Next, we compared the efficacy of M-MSCs at a low dose (1×105 cells) to that of an identical dose of adult bone marrow (BM)-derived MSCs. RESULTS: Rats in the KC group exhibited increased voiding frequency and reduced bladder capacity compared to rats of the sham group. However, these parameters recovered after transplantation of M-MSCs at all doses tested. KC bladders exhibited markedly increased mast cell infiltration, apoptosis, and tissue fibrosis. Administration of M-MSCs significantly reversed these characteristic histological alterations. Gene expression analyses indicated that several genes associated with tissue fibrosis were markedly upregulated in KC bladders. However the expression of these genes was significantly suppressed by the administration of M-MSCs. Importantly, M-MSCs ameliorated bladder deterioration in KC rats after injection of a low dose (1×105) of cells, at which point BM-derived MSCs did not substantially improve bladder function. CONCLUSIONS: This study demonstrates for the first time the therapeutic efficacy of hESC-derived M-MSCs on KC in rats. M-MSCs restored bladder function more effectively than did BM-derived MSCs, protecting against abnormal changes including mast cell infiltration, apoptosis and fibrotic damage.

15.
Sci Rep ; 7(1): 8872, 2017 08 21.
Article En | MEDLINE | ID: mdl-28827631

Interstitial cystitis/bladder pain syndrome (IC/BPS) is an intractable disease characterized by severe pelvic pain and urinary frequency. Mesenchymal stem cell (MSC) therapy is a promising approach to treat incurable IC/BPS. Here, we show greater therapeutic efficacy of human embryonic stem cell (hESC)-derived multipotent stem cells (M-MSCs) than adult bone-marrow (BM)-derived counterparts for treating IC/BPS and also monitor long-term safety and in vivo properties of transplanted M-MSCs in living animals. Controlled hESC differentiation and isolation procedures resulted in pure M-MSCs displaying typical MSC behavior. In a hydrochloric-acid instillation-induced IC/BPS animal model, a single local injection of M-MSCs ameliorated bladder symptoms of IC/BPS with superior efficacy compared to BM-derived MSCs in ameliorating bladder voiding function and histological injuries including urothelium denudation, mast-cell infiltration, tissue fibrosis, apoptosis, and visceral hypersensitivity. Little adverse outcomes such as abnormal growth, tumorigenesis, or immune-mediated transplant rejection were observed over 12-months post-injection. Intravital confocal fluorescence imaging tracked the persistence of the transplanted cells over 6-months in living animals. The infused M-MSCs differentiated into multiple cell types and gradually integrated into vascular-like structures. The present study provides the first evidence for improved therapeutic efficacy, long-term safety, and in vivo distribution and cellular properties of hESC derivatives in preclinical models of IC/BPS.


Cystitis, Interstitial/metabolism , Cystitis, Interstitial/physiopathology , Human Embryonic Stem Cells/metabolism , Mesenchymal Stem Cell Transplantation , Pain Management , Pain/metabolism , Animals , Biomarkers , Cystitis, Interstitial/etiology , Cystitis, Interstitial/therapy , Disease Models, Animal , Fluorescent Antibody Technique , Human Embryonic Stem Cells/cytology , Humans , Immunohistochemistry , Intercellular Signaling Peptides and Proteins/metabolism , Karyotype , Microscopy, Confocal , Molecular Imaging , Pain/etiology , Pain/physiopathology , Signal Transduction , Syndrome , Treatment Outcome , Wnt Proteins/metabolism
16.
J Am Chem Soc ; 139(31): 10880-10886, 2017 08 09.
Article En | MEDLINE | ID: mdl-28708389

Switchable phototheranostic nanomaterials are of particular interest for specific biosensing, high-quality imaging, and targeted therapy in the field of precision nanomedicine. Here, we develop a "one-for-all" nanomaterial that self-assembles from flexible and versatile phthalocyanine building blocks. The nanostructured phthalocyanine assemblies (NanoPcTBs) display intrinsically unique photothermal and photoacoustic properties. Fluorescence and reactive oxygen species generation can be triggered depending on a targeted, protein-induced, partial disassembly mechanism, which creates opportunities for low-background fluorescence imaging and activatable photodynamic therapy. In vitro evaluations indicate that NanoPcTB has a high selectivity for biotin receptor-positive cancer cells (e.g., A549) compared to biotin receptor-negative cells (e.g., WI38-VA13) and permits a combined photodynamic and photothermal therapeutic effect. Following systemic administration, the NanoPcTBs accumulate in A549 tumors of xenograft-bearing mice, and laser irradiation clearly induces the inhibition of tumor growth.


Indoles/chemistry , Nanostructures , Photochemotherapy/methods , Photons , Photosensitizing Agents/chemistry , Animals , Cell Line, Tumor , Fluorescence , Heterografts , Humans , Indoles/therapeutic use , Isoindoles , Mice , Microscopy, Electron, Transmission , Neoplasms/drug therapy , Neoplasms/metabolism , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/metabolism
17.
Stem Cells Dev ; 26(10): 734-742, 2017 05 15.
Article En | MEDLINE | ID: mdl-28346802

Acquisition of proper metabolomic fate is required to convert somatic cells toward fully reprogrammed pluripotent stem cells. The majority of induced pluripotent stem cells (iPSCs) are partially reprogrammed and have a transcriptome different from that of the pluripotent stem cells. The metabolomic profile and mitochondrial metabolic functions required to achieve full reprogramming of somatic cells to iPSC status have not yet been elucidated. Clarification of the metabolites underlying reprogramming mechanisms should enable further optimization to enhance the efficiency of obtaining fully reprogrammed iPSCs. In this study, we characterized the metabolites of human fully reprogrammed iPSCs, partially reprogrammed iPSCs, and embryonic stem cells (ESCs). Using capillary electrophoresis time-of-flight mass spectrometry-based metabolomics, we found that 89% of analyzed metabolites were similarly expressed in fully reprogrammed iPSCs and human ESCs (hESCs), whereas partially reprogrammed iPSCs shared only 74% similarly expressed metabolites with hESCs. Metabolomic profiling analysis suggested that converting mitochondrial respiration to glycolytic flux is critical for reprogramming of somatic cells into fully reprogrammed iPSCs. This characterization of metabolic reprogramming in iPSCs may enable the development of new reprogramming parameters for enhancing the generation of fully reprogrammed human iPSCs.


Cellular Reprogramming , Embryonic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Metabolome , Cell Line , Cells, Cultured , Embryonic Stem Cells/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/cytology
18.
J Dermatol Sci ; 86(2): 123-131, 2017 May.
Article En | MEDLINE | ID: mdl-28185769

BACKGROUND: Risk of teratoma formation during human pluripotent stem cell (hPSC)-based cell therapy is one of the technical hurdles that must be resolved before their wider clinical application. To this end, selective ablation of undifferentiated hPSCs has been achieved using small molecules whose application should be safe for differentiated cells derived from the hPSCs. OBJECTIVE: However, the functional safety of such small molecules in the cells differentiated from hPSCs has not yet been extensively validated. METHOD: We used the survivin inhibitor YM155, which induced highly selective cell death of hPSCs for ablating undifferentiated hESCs after differentiation to human mesenchymal stem cells (hMSCs) and examined whether hMSCs remained fully functional after being exposed by YM155. RESULTS: We demonstrated that human mesenchymal stem cells (hMSCs) derived from human embryonic stem cells (hESCs) remained fully functional in vitro and in vivo, while hESCs were selectively ablated. CONCLUSION: These results suggest that a single treatment with YM155 after differentiation of hMSCs would be a valid approach for teratoma-free cell therapy.


Cell Differentiation , Human Embryonic Stem Cells/cytology , Imidazoles/pharmacology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Mesenchymal Stem Cells/cytology , Naphthoquinones/pharmacology , Pluripotent Stem Cells/cytology , Wound Healing , Animals , Cell Culture Techniques , Cell Survival , Cells, Cultured , Culture Media , Cytokines/metabolism , Humans , Immunohistochemistry , Lasers , Mice , Survivin
19.
Surg Neurol Int ; 7(Suppl 24): S629-31, 2016.
Article En | MEDLINE | ID: mdl-27656325

BACKGROUND: The GEMINI spinal cord fusion protocol has been developed to achieve a successful cephalosomatic anastomosis. Here, we report the preliminary data on the use of a fusogen [polyethylene glycol (PEG)] after full cervical cord transection in mice to facilitate the fusion of both ends of a sharply transected spinal cord. METHODS: Cervical laminectomy and a complete, visually confirmed cervical cord (C 5) transection was performed on female albino mice (n = 16). In Group 1 (n = 8), a fusogen, (PEG) was used to bridge the gap between the cut ends of the spinal cord. Group 2 received the same spinal cord transection but was treated with saline. Outcome was assessed daily using a standard scale (modified 22-point Basso-Beattie-Bresnahan scale) and filmed on camera. RESULTS: The PEG group (group 1) showed partial restoration of motor function after 4 weeks of observation; group 2 (placebo) did not recover any useful motor activity. CONCLUSION: In this preliminary experiment, PEG, but not saline, promoted partial motor recovery in mice submitted to full cervical transection.

20.
Stem Cells Transl Med ; 5(9): 1268-76, 2016 09.
Article En | MEDLINE | ID: mdl-27388242

UNLABELLED: : Diabetic retinopathy (DR) is the leading cause of blindness in working-age people. Pericyte loss is one of the pathologic cellular events in DR, which weakens the retinal microvessels. Damage to the microvascular networks is irreversible and permanent; thus further progression of DR is inevitable. In this study, we hypothesize that multipotent perivascular progenitor cells derived from human embryonic stem cells (hESC-PVPCs) improve the damaged retinal vasculature in the streptozotocin-induced diabetic rodent models. We describe a highly efficient and feasible protocol to derive such cells with a natural selection method without cell-sorting processes. As a cellular model of pericytes, hESC-PVPCs exhibited marker expressions such as CD140B, CD146, NG2, and functional characteristics of pericytes. Following a single intravitreal injection into diabetic Brown Norway rats, we demonstrate that the cells localized alongside typical perivascular regions of the retinal vasculature and stabilized the blood-retinal barrier breakdown. Findings in this study highlight a therapeutic potential of hESC-PVPCs in DR by mimicking the role of pericytes in vascular stabilization. SIGNIFICANCE: This study provides a simple and feasible method to generate perivascular progenitor cells from human embryonic stem cells. These cells share functional characteristics with pericytes, which are irreversibly lost at the onset of diabetic retinopathy. Animal studies demonstrated that replenishing the damaged pericytes with perivascular progenitor cells could restore retinal vascular integrity and prevent fluid leakage. This provides promising and compelling evidence that perivascular progenitor cells can be used as a novel therapeutic agent to treat diabetic retinopathy patients.


Diabetic Retinopathy/pathology , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/transplantation , Pericytes/cytology , Animals , Cell Culture Techniques/methods , Cell Differentiation , Diabetes Mellitus, Experimental/pathology , Disease Models, Animal , Humans , Multipotent Stem Cells , Oligonucleotide Array Sequence Analysis , Rats
...