Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Mol Cell ; 84(9): 1637-1650.e10, 2024 May 02.
Article En | MEDLINE | ID: mdl-38604171

Long interspersed element-1 (LINE-1 or L1) comprises 17% of the human genome, continuously generates genetic variations, and causes disease in certain cases. However, the regulation and function of L1 remain poorly understood. Here, we uncover that L1 can enrich RNA polymerase IIs (RNA Pol IIs), express L1 chimeric transcripts, and create contact domain boundaries in human cells. This impact of L1 is restricted by a nuclear matrix protein scaffold attachment factor B (SAFB) that recognizes transcriptionally active L1s by binding L1 transcripts to inhibit RNA Pol II enrichment. Acute inhibition of RNA Pol II transcription abolishes the domain boundaries associated with L1 chimeric transcripts, indicating a transcription-dependent mechanism. Deleting L1 impairs domain boundary formation, and L1 insertions during evolution have introduced species-specific domain boundaries. Our data show that L1 can create RNA Pol II-enriched regions that alter genome organization and that SAFB regulates L1 and RNA Pol II activity to preserve gene regulation.


Long Interspersed Nucleotide Elements , Matrix Attachment Region Binding Proteins , RNA Polymerase II , Receptors, Estrogen , Transcription, Genetic , Humans , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Long Interspersed Nucleotide Elements/genetics , Matrix Attachment Region Binding Proteins/metabolism , Matrix Attachment Region Binding Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , Nuclear Matrix-Associated Proteins/genetics , Gene Expression Regulation , Protein Binding , HEK293 Cells , Genome, Human
2.
Cancer Res ; 84(4): 598-615, 2024 02 15.
Article En | MEDLINE | ID: mdl-38095539

Diffuse intrinsic pontine glioma (DIPG) is the most aggressive pediatric brain tumor, and the oncohistone H3.3K27M mutation is associated with significantly worse clinical outcomes. Despite extensive research efforts, effective approaches for treating DIPG are lacking. Through drug screening, we identified the combination of gemcitabine and fimepinostat as a potent therapeutic intervention for H3.3K27M DIPG. H3.3K27M facilitated gemcitabine-induced apoptosis in DIPG, and gemcitabine stabilized and activated p53, including increasing chromatin accessibility for p53 at apoptosis-related loci. Gemcitabine simultaneously induced a prosurvival program in DIPG through activation of RELB-mediated NF-κB signaling. Specifically, gemcitabine induced the transcription of long terminal repeat elements, activated cGAS-STING signaling, and stimulated noncanonical NF-κB signaling. A drug screen in gemcitabine-treated DIPG cells revealed that fimepinostat, a dual inhibitor of HDAC and PI3K, effectively suppressed the gemcitabine-induced NF-κB signaling in addition to blocking PI3K/AKT activation. Combination therapy comprising gemcitabine and fimepinostat elicited synergistic antitumor effects in vitro and in orthotopic H3.3K27M DIPG xenograft models. Collectively, p53 activation using gemcitabine and suppression of RELB-mediated NF-κB activation and PI3K/AKT signaling using fimepinostat is a potential therapeutic strategy for treating H3.3K27M DIPG. SIGNIFICANCE: Gemcitabine activates p53 and induces apoptosis to elicit antitumor effects in H3.3K27M DIPG, which can be enhanced by blocking NF-κB and PI3K/AKT signaling with fimepinostat, providing a synergistic combination therapy for DIPG.


Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Morpholines , Pyrimidines , Sulfur Compounds , Child , Humans , Diffuse Intrinsic Pontine Glioma/genetics , Gemcitabine , NF-kappa B , Brain Stem Neoplasms/drug therapy , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/pathology , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases , Tumor Suppressor Protein p53
3.
J Neurooncol ; 163(2): 447-453, 2023 Jun.
Article En | MEDLINE | ID: mdl-37266847

PURPOSE: To investigate the different clinical and cytogenetic features of skull base meningiomas (SBMs) and non-SBMs (NSBMs). METHODS: We conducted a retrospective study on a series of 316 patients with primary intracranial meningiomas. The t-test and the Chi-square test were used to analyze the differences between 194 SBMs and 122 NSBMs. The Cox analysis was used to determine prognostic factors for tumor recurrence. RESULTS: Compared with NSBMs, on average, the age of patients with SBMs was about 2.88 years younger (p = 0.024); the duration of operation of SBMs was 2.73 h longer (p < 0.001); the duration of hospital stays of patients with SBMs was about 6.76 days longer (p < 0.001); the tumor volume was 7.69 cm3 smaller (p = 0.025); the intraoperative blood loss was 147.61ml more (p = 0.039); the total cost of SBMs was 1.39 times more (p < 0.001); the preoperative KPS, postoperative KPS, and follow-up KPS of patients with SBMs were all respectively lower (p < 0.001); Gross total resection was less achieved (p < 0.001). SBMs (average of 20.80 per sample) had a smaller total number of copy number variations (CNVs) than NSBMs (29.98 per sample) (p = 0.009). Extremely large CNVs (> 5 Mb) were more likely to present in NSBMs (p < 0.001). Cox analysis showed that subtotal resection (p = 0.002) and the total number of CNVs (p = 0.015) were independent risk factors for tumor recurrence. CONCLUSIONS: The clinical and cytogenetic features of SBMs were different from NSBMs. Moreover, the degree of resection and the total number of whole-genome CNVs were independent prognostic factors for tumor recurrence.


Meningeal Neoplasms , Meningioma , Skull Base Neoplasms , Humans , Child, Preschool , Meningioma/genetics , Meningioma/surgery , Meningioma/pathology , Meningeal Neoplasms/genetics , Meningeal Neoplasms/surgery , Meningeal Neoplasms/pathology , Retrospective Studies , Follow-Up Studies , Neoplasm Recurrence, Local/genetics , DNA Copy Number Variations , Skull Base Neoplasms/genetics , Skull Base Neoplasms/surgery , Skull Base Neoplasms/pathology , Cytogenetic Analysis , Treatment Outcome
4.
Cell Stem Cell ; 29(6): 948-961.e6, 2022 06 02.
Article En | MEDLINE | ID: mdl-35659877

2-cell-like cells (2CLCs)-which comprise only ∼1% of murine embryonic stem cells (mESCs)-resemble blastomeres of 2-cell-stage embryos and are used to investigate zygotic genome activation (ZGA). Here, we discovered that TRIM66 and DAX1 function together as negative regulators of the 2C-like state in mESCs. Chimeric assays confirmed that mESCs lacking TRIM66 or DAX1 function have bidirectional embryonic and extraembryonic differentiation potential. TRIM66 functions by recruiting the co-repressor DAX1 to the Dux promoter, and TRIM66's repressive effect on Dux is dependent on DAX1. A solved crystal structural shows that TRIM66's PHD finger recognizes H3K4-K9me3, and mutational evidence confirmed that TRIM66's PHD finger is essential for its repression of Dux. Thus, beyond expanding the scope of known 2CLC regulators, our study demonstrates that interventions disrupting TRIM66 or DAX1 function in mESCs yield 2CLCs with expanded bidirectional differentiation potential, opening doors for the practical application of these totipotent-like cells.


Gene Expression Regulation, Developmental , Zygote , Animals , Embryonic Stem Cells , Genome , Mice , Promoter Regions, Genetic
5.
Genomics Proteomics Bioinformatics ; 20(1): 177-191, 2022 02.
Article En | MEDLINE | ID: mdl-34624550

Postzygotic mutations are acquired in normal tissues throughout an individual's lifetime and hold clues for identifying mutagenic factors. Here, we investigated postzygotic mutation spectra of healthy individuals using optimized ultra-deep exome sequencing of the time-series samples from the same volunteer as well as the samples from different individuals. In blood, sperm, and muscle cells, we resolved three common types of mutational signatures. Signatures A and B represent clock-like mutational processes, and the polymorphisms of epigenetic regulation genes influence the proportion of signature B in mutation profiles. Notably, signature C, characterized by C>T transitions at GpCpN sites, tends to be a feature of diverse normal tissues. Mutations of this type are likely to occur early during embryonic development, supported by their relatively high allelic frequencies, presence in multiple tissues, and decrease in occurrence with age. Almost none of the public datasets for tumors feature this signature, except for 19.6% of samples of clear cell renal cell carcinoma with increased activation of the hypoxia-inducible factor 1 (HIF-1) signaling pathway. Moreover, the accumulation of signature C in the mutation profile was accelerated in a human embryonic stem cell line with drug-induced activation of HIF-1α. Thus, embryonic hypoxia may explain this novel signature across multiple normal tissues. Our study suggests that hypoxic condition in an early stage of embryonic development is a crucial factor inducing C>T transitions at GpCpN sites; and individuals' genetic background may also influence their postzygotic mutation profiles.


Epigenesis, Genetic , Semen , Adult , Humans , Hypoxia , Hypoxia-Inducible Factor 1 , Male , Mutation
6.
Front Oncol ; 10: 1382, 2020.
Article En | MEDLINE | ID: mdl-32923390

Meningiomas, as the most common primary tumor of the central nervous system, are known to harbor genomic aberrations that associate with clinical phenotypes. Here we performed genome-wide genotyping for cranial meningiomas in 383 Chinese patients and identified 9,821 copy-number variations (CNVs). Particularly, patients with diverse clinical features had distinct tumor CNV profiles. CNV burdens were greater in high-grade (WHO grade II and III) samples, recurrent lesions, large tumors (diameter >4.3 cm), and those collected from male patients. Nevertheless, the level of CNV burden did not relate to tumor locations, peritumoral brain edema, bone invasion, or multiple lesions. Overall, the most common tumor CNVs were the copy-number gain (CNG) at 22q11.1 and the copy-number losses (CNLs) at 22q13.2, 14q11.2, 1p34.3, and 1p31.3. Recurrent lesions were featured by the CNLs at 1p31.3, 6q22.31, 9p21.3, and 11p12, and high-grade samples had more CNVs at 4q13.3 and 6q22.31. Meanwhile, large tumors were more likely to have the CNVs at 1p31.3 and 1p34.3. Additionally, recurrence prediction indicated the CNLs at 4p16.3 (p = 0.009, hazard ratio = 5.69) and 10p11.22 (p = 0.037, hazard ratio = 4.53) were candidate independent risk factors.

7.
EBioMedicine ; 57: 102878, 2020 Jul.
Article En | MEDLINE | ID: mdl-32652319

BACKGROUND: Myopia is a good model for understanding the interaction between genetics and environmental stimuli. Here we dissect the biological processes affecting myopia progression. METHODS: Human Genetic Analyses: (1) gene set analysis (GSA) of new genome wide association study (GWAS) data for 593 individuals with high myopia (refraction ≤ -6 diopters [D]); (2) over-representation analysis (ORA) of 196 genes with de novo mutations, identified by whole genome sequencing of 45 high-myopia trio families, and (3) ORA of 284 previously reported myopia risk genes. Contributions of the enriched signaling pathways in mediating the genetic and environmental interactions during myopia development were investigated in vivo and in vitro. RESULTS: All three genetic analyses showed significant enrichment of four KEGG signaling pathways, including amphetamine addiction, extracellular matrix (ECM) receptor interaction, neuroactive ligand-receptor interaction, and regulation of actin cytoskeleton pathways. In individuals with extremely high myopia (refraction ≤ -10 D), the GSA of GWAS data revealed significant enrichment of the HIF-1α signaling pathway. Using human scleral fibroblasts, silencing the key nodal genes within protein-protein interaction networks for the enriched pathways antagonized the hypoxia-induced increase in myofibroblast transdifferentiation. In mice, scleral HIF-1α downregulation led to hyperopia, whereas upregulation resulted in myopia. In human subjects, near work, a risk factor for myopia, significantly decreased choroidal blood perfusion, which might cause scleral hypoxia. INTERPRETATION: Our study implicated the HIF-1α signaling pathway in promoting human myopia through mediating interactions between genetic and environmental factors. FUNDING: National Natural Science Foundation of China grants; Natural Science Foundation of Zhejiang Province.


Gene-Environment Interaction , Genetic Predisposition to Disease , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Myopia/genetics , Animals , Disease Models, Animal , Female , Genome-Wide Association Study , Humans , Male , Mice , Myopia/metabolism , Myopia/pathology , Sclera/metabolism , Sclera/pathology , Signal Transduction
8.
Hepatol Int ; 14(3): 326-337, 2020 May.
Article En | MEDLINE | ID: mdl-32100258

BACKGROUND: Host genome integration of HBV sequence is considered to be significant in HBV antigen expression and the development of hepatocellular carcinoma (HCC). METHOD: We developed a probe-based capture strategy to enrich integrated HBV DNA for deep-sequencing analysis of integration sites in paired patient samples derived from tumor, liver tissue adjacent to tumor, saliva and plasma, as a platform for exploring the correlation, significance and utility of detecting integrations in these sample types. RESULTS: Most significantly, alpha fetoprotein levels significantly correlated to the amounts of integrations detected in tumor. Viral-host chimeric DNA fragments were successfully detected at high sequencing coverage in plasma rather than saliva samples from HCC patients, and each fragment of this type was only seen once in plasma from chronic hepatitis B patients. Almost all plasma chimeric fragments were derived from integrations in tumor rather than in adjacent liver tissues. Over 50% of them may produce viral-host chimeric transcripts according to deep RNA sequencing in paired tissue samples. Particularly, in patients with low HBV DNA level (< 250 UI/ml), the seemingly normal HBsAg titers may be explained by larger amounts of integrations detected. Meanwhile, we developed a strategy to predict integrants by pairing breakpoints for each integration event. Among four resolved viral patterns, the majority of Pattern I events (81.2%) retained the complete opening reading frame for HBV surface proteins. CONCLUSION: We achieve the efficient enrichment of plasma cell-free chimeric DNA from integration site, and demonstrate that chimeric DNA profiling in plasma is a promising noninvasive approach to monitor HBV integration in liver cancer development and to determine the ability of integrated sequences to express viral proteins that can be targeted, e.g. by immunotherapies.


Carcinoma, Hepatocellular , DNA, Viral/analysis , Hepatitis B virus , Hepatitis B, Chronic , Integration Host Factors , Liver Neoplasms , Liver , Antigens, Viral/immunology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Cell-Free Nucleic Acids/blood , Female , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Hepatitis B virus/isolation & purification , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/virology , Host Microbial Interactions , Humans , Immunotherapy/methods , Integration Host Factors/blood , Integration Host Factors/isolation & purification , Liver/pathology , Liver/virology , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/virology , Male , Middle Aged , Reproducibility of Results , Saliva/virology , Virus Integration , alpha-Fetoproteins/analysis
9.
Genomics Proteomics Bioinformatics ; 17(3): 229-247, 2019 06.
Article En | MEDLINE | ID: mdl-31494266

To unravel the genetic mechanisms of disease and physiological traits, it requires comprehensive sequencing analysis of large sample size in Chinese populations. Here, we report the primary results of the Chinese Academy of Sciences Precision Medicine Initiative (CASPMI) project launched by the Chinese Academy of Sciences, including the de novo assembly of a northern Han reference genome (NH1.0) and whole genome analyses of 597 healthy people coming from most areas in China. Given the two existing reference genomes for Han Chinese (YH and HX1) were both from the south, we constructed NH1.0, a new reference genome from a northern individual, by combining the sequencing strategies of PacBio, 10× Genomics, and Bionano mapping. Using this integrated approach, we obtained an N50 scaffold size of 46.63 Mb for the NH1.0 genome and performed a comparative genome analysis of NH1.0 with YH and HX1. In order to generate a genomic variation map of Chinese populations, we performed the whole-genome sequencing of 597 participants and identified 24.85 million (M) single nucleotide variants (SNVs), 3.85 M small indels, and 106,382 structural variations. In the association analysis with collected phenotypes, we found that the T allele of rs1549293 in KAT8 significantly correlated with the waist circumference in northern Han males. Moreover, significant genetic diversity in MTHFR, TCN2, FADS1, and FADS2, which associate with circulating folate, vitamin B12, or lipid metabolism, was observed between northerners and southerners. Especially, for the homocysteine-increasing allele of rs1801133 (MTHFR 677T), we hypothesize that there exists a "comfort" zone for a high frequency of 677T between latitudes of 35-45 degree North. Taken together, our results provide a high-quality northern Han reference genome and novel population-specific data sets of genetic variants for use in the personalized and precision medicine.


Asian People/genetics , Ethnicity/genetics , Genetics, Population , Genome, Human/genetics , Whole Genome Sequencing , China , Cohort Studies , Delta-5 Fatty Acid Desaturase , Gene Frequency/genetics , Genome-Wide Association Study , Humans , Male , Molecular Sequence Annotation , Mutation/genetics , Polymorphism, Single Nucleotide/genetics
10.
Twin Res Hum Genet ; 21(5): 361-368, 2018 10.
Article En | MEDLINE | ID: mdl-30064533

Familial monozygotic (MZ) twinning reports are rare around the world, and we report a four-generation pedigree with seven recorded pairs of female MZ twins. Whole-genome sequencing of seven family members was performed to explore the featured genetic factors in MZ twins. For variations specific to MZ twins, five novel variants were observed in the X chromosome. These candidates were used to explain the seemingly X-linked dominant inheritance pattern, and only one variant was exonic, located at the 5'UTR region of ZCCHC12 (chrX: 117958597, G > A). Besides, consistent mitochondrial DNA composition in the maternal linage precluded roles of mitochondria for this trait. In this pedigree, autosomes also contain diverse variations specific to MZ twins. Pathway analysis revealed a significant enrichment of genes carrying novel SNVs in the epithelial adherens junction-signaling pathway (p = .011), contributed by FGFR1, TUBB6, and MYH7B. Meanwhile, TBC1D22A, TRIOBP, and TUBB6, also carrying similar SNVs, were involved in the GTPase family-mediated signal pathway. Furthermore, gene-set enrichment analysis for 533 genes covered by copy number variations specific to MZ twins illustrated that the tight junction-signaling pathway was significantly enriched (p < .001). Therefore, the novel changes in the X chromosome and the provided candidate variants across autosomes may be responsible for MZ twinning, giving clues to increase our understanding about the underlying mechanism.


Chromosomes, Human, X/genetics , Genome, Human/genetics , Twinning, Monozygotic/genetics , Whole Genome Sequencing , DNA Copy Number Variations/genetics , Family , Female , Humans , Male , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Transcription Factors/genetics , Twins, Dizygotic/genetics , Twins, Monozygotic
11.
Gene ; 668: 121-128, 2018 Aug 20.
Article En | MEDLINE | ID: mdl-29778423

Although ankylosing spondylitis (AS) is a common, highly heritable arthropathy, the precise genetic mechanism underlying the disease remains elusive. Here, we investigate the disease-causing mutations in a large AS family with distinguished complexity, consisting of 23 patients covering four generations and exhibiting a mixed HLA-B27 (+) and (-) status. Linkage analysis with 32 members using three methods and whole-exome sequencing analysis with three HLA-B27 (+) patients, one HLA-B27 (-) patient, and one healthy individual did not identify a mutation common to all of the patients, strongly suggesting the existence of genetic heterogeneity in this large pedigree. However, if only B27-positive patients were analyzed, the linkage analysis located a 22-Mb region harboring the HLA gene cluster in chromosome 6 (LOD = 4.2), and the subsequent exome analysis identified two non-synonymous mutations in the TREML2 and IP6K3 genes. These genes were resequenced among 370 sporadic AS patients and 487 healthy individuals. A significantly higher mutation frequency of TREML2 was observed in AS patients (1.51% versus 0.21%). The results obtained for the AS pedigree and sporadic patients suggest that mutation of TREML2 is a major factor leading to AS for HLA-B27 (+) members in this large family and that TREML2 is also a susceptibility gene promoting the development of ankylosing spondylitis in HLA-B27 (+) individuals.


HLA-B27 Antigen/analysis , Mutation , Receptors, Immunologic/genetics , Spondylitis, Ankylosing/genetics , Female , Genetic Linkage , Humans , Male , Phenotype
...