Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 6503, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316328

RESUMEN

Micro/nano electromechanical systems and nanodevices often suffer from degradation under electrical pulse. However, the origin of pulse-induced degradation remains an open question. Herein, we investigate the defect dynamics in Au nanocrystals under pulse conditions. By decoupling the electron wind force via a properly-designed in situ TEM electropulsing experiment, we reveal a non-directional migration of Σ3{112} incoherent twin boundary upon electropulsing, in contrast to the expected directional migration under electron wind force. Quantitative analyses demonstrate that such exceptional incoherent twin boundary migration is governed by the electron-dislocation interaction that enhances the atom vibration at dislocation cores, rather than driven by the electron wind force in classic model. Our observations provide valuable insights into the origin of electroplasticity in metallic materials at the atomic level, which are of scientific and technological significances to understanding the electromigration and resultant electrical damage/failure in micro/nano-electronic devices.

2.
ACS Nano ; 15(11): 18419-18428, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34704750

RESUMEN

Potassium-ion batteries (KIBs) are considered as low-cost electrochemical energy storage technologies because of the abundant potassium resources. However, the practical applications of KIBs are mainly hampered by the unsatisfactory electrochemical performance of anode materials which often undergo large volume variations during potassiation-depotassiation, limiting their cycling life. Here, low-cost sulfurized polyacrylonitrile (S-PAN) is reported as an attractive anode candidate for KIBs. It provides a high potassium storage capacity of 569 mAh g(S-PAN)-1 with decent rate capability and cycling stability (no capacity loss after 1500 cycles, running time ∼188 days). Detailed ex situ spectroscopic and in situ microscopic characterizations reveal that the distinguished electrochemical performance of S-PAN is attributed to the high reversibility of its covalent C-S and S-S bonds which undergo repeated cleavage-redimerization during potassiation-depotassiation concomitant with relatively small volume variation (less than 24.2%). Subsequently, a full-cell constructed by pairing high-voltage K2MnFe(CN)6 cathode with high-capacity S-PAN anode demonstrates an attractive energy density (290.9 Wh kg-1) and long-term cycling stability (1200 cycles with 95.4% capacity retention). Given the high performance and low cost of both anode and cathode materials, it is believed that the present full-cell promises it as a competitive energy storage system for the cost-sensitive grid-scale applications.

3.
Nat Commun ; 12(1): 2167, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846311

RESUMEN

Potassium-ion batteries (KIBs) are promising electrochemical energy storage systems because of their low cost and high energy density. However, practical exploitation of KIBs is hampered by the lack of high-performance cathode materials. Here we report a potassium manganese hexacyanoferrate (K2Mn[Fe(CN)6]) material, with a negligible content of defects and water, for efficient high-voltage K-ion storage. When tested in combination with a K metal anode, the K2Mn[Fe(CN)6]-based electrode enables a cell specific energy of 609.7 Wh kg-1 and 80% capacity retention after 7800 cycles. Moreover, a K-ion full-cell consisting of graphite and K2Mn[Fe(CN)6] as anode and cathode active materials, respectively, demonstrates a specific energy of 331.5 Wh kg-1, remarkable rate capability, and negligible capacity decay for 300 cycles. The remarkable electrochemical energy storage performances of the K2Mn[Fe(CN)6] material are attributed to its stable frameworks that benefit from the defect-free structure.

4.
ACS Nano ; 14(12): 17091-17099, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33152233

RESUMEN

Two-dimensional (2D) materials exhibit exceptional physical and chemical properties owing to their atomically thin structures. However, it remains challenging to produce 2D materials consisting of pure monoelemental metallic atoms. Here free-standing 2D gold (Au) membranes were prepared via in situ transmission electron microscopy straining of Au films. The applied in-plane tensile strain induces an extensive amount of out-of-plane thinning deformation in a local region of an Au thin film, resulting in the nucleation and growth of a free-standing 2D Au membrane surrounded by its film matrix. This 2D membrane is shown to be one atom thick with a simple-hexagonal lattice, which forms an atomically sharp interface with the face-centered cubic lattice of the film matrix. Diffusive transport of surface atoms, in conjunction with the dynamic evolution of interface dislocations, plays important roles in the formation of 2D Au membranes during the mechanical thinning process. These results demonstrate a top-down approach to produce free-standing 2D membranes and provide a general understanding on extreme mechanical thinning of metallic films down to the single-atom-thick limit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA